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Abstract— In this study, we work with a heterogeneous
swarm of wheeled and aerial robots. We present a self-
organised approach inspired by the aggregation behaviour of
cockroaches that allows each aerial robot to form a dedicated
group of wheeled robots of a particular size. Our approach
is based on simple probabilistic rules, but still proves robust
and flexible. Different groups can be formed in parallel,
and the size of the groups can be dynamically modified.
Our work is based on a real robotic platform that is still
under development—here, we present results and analysis of
extensive simulation-based experiments. We also present a
mathematical analysis of our system.

I. INTRODUCTION

We consider a scenario in which a range of different

tasks must be carried out by a heterogeneous swarm made

up of flying robots (eye-bots) and wheeled robots (foot-

bots). Each task is physically executed by a dedicated

group of foot-bots. The eye-bots are responsible for ex-

ploring the environment, determining the optimal foot-bot

group size for each task, aggregating foot-bots into groups

of the relevant sizes, and finally for guiding the groups of

foot-bots to the task sites.

In this study, we focus on the aggregation and group

size regulation aspect of the above scenario. Aggregation

is a fundamental process that has been studied in many

different contexts such as biology [8], physics [16] and

robotics [5]. The aggregation behaviour of cockroaches in

an environment containing shelters is relatively simple and

has been well explored by biologists—its dynamics can be

accurately modelled at the individual cockroach level by

mapping local environmental conditions to simple stop/go

probabilities. Previous robotics studies have shown how

this behaviour can be faithfully mimicked by a group of

robots. Existing robotic implementations share key features

of the cockroach model. In particular, the equilibrium

distribution of agents depends passively on the initial

configuration of the environment and on the static mapping

of environmental conditions to stop/go probabilities.

In this paper, we take inspiration from the cockroach

aggregation model, but extend it so that the equilibrium

distribution of cockroach like agents (foot-bots in our case)

can be dynamically controlled by the system. To do this,

we treat our eye-bots like ‘active’ shelters under which the

foot-bots aggregate. The eye-bots are active in the sense

that they can dynamically alter the stop/go probabilities for

the foot-bots aggregating underneath them.

We model our system mathematically, and then imple-

ment it using simulated eye-bots and foot-bots (the robots

we simulate are based on a real robotic platform that is still

under development). We demonstrate the feasibility of our
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system and show that it exhibits several desirable features,

namely stabilisation, redistribution and balancing (these

concepts are elaborated in Section III).

II. RELATED WORK

There is a large body of literature on heterogeneous

robotic groups [7], [15]. However, to the best of our

knowledge, no existing robotic study investigates group

size regulation in heterogeneous robot groups. There is

some literature on aggregation and group size regulation

in homogeneous groups. Dorigo et al. [1] evolved two

dimensional distributed aggregation in a swarm of em-

bodied robots, Martinoli et al. [5] investigated the effects

of probabilistic parameters on the size of object clusters

collected by Khepera robots. Neither work provided an

explicit group size control mechanism. Melhuish et al. [6]

controlled group sizes in a swarm of abstracted agents

using a firefly-like synchronisation mechanism. However,

group size control was not fine grained to the level of

individual robots, only one group was formed at a time

and the physics of an embodied system was not taken into

account.

In a series of experiments in a white circular arena,

Jeanson et al. [3] derived a probabilistic behavioural model

of the first instar larvae of the German cockroach Blattella

germanica. They showed that individuals switch proba-

bilistically between two alternative behaviours: random

walk and resting. Analysis revealed that the probability for

a cockroach to switch to (or remain in) one of these two

states depends on the number of resting cockroaches in its

neighbourhood (in direct antenna contact): as this number

increases, the stopping probability also increases, while the

probability of leaving an aggregate decreases. Furthermore,

experimental evidence shows that cockroaches prefer to

aggregate in dark places [13]. If multiple shelters are

present in the environment, the majority of cockroaches

aggregate under only one shelter rather than spreading

evenly among the different shelters. A positive feedback

mechanism ensures that this happens even when the shel-

ters are perfectly identical [4].

Garnier et al. [2] used Jeanson’s behavioural model to

show that a group of cockroach-like robots can achieve

a collective choice between two different shelters in the

environment through simple local interactions.

III. GOALS

Our system must be able to cope with the dynamic

arrival and departure of eye-bots and foot-bots during

system execution. It is also reasonable to assume that

there will sometimes be insufficient foot-bots available to

carry out all tasks at the same time, i.e., there may not

be enough foot-bots to fill the quota of every eye-bot

(quota refers to the desired group size of a single eye-

bot). We have identified three key features that we believe
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Fig. 1. The robots used in this study. At the time of writing, the robotic hardware is still under development. (a) The eye-bot (aerial robot). (b) The
foot-bot (wheeled robot). (c) Hardware prototype of the range and bearing system. (d) The communication range of the eye-bot. (e) The simulation
environment. The grey circles represent the signal range of the eye-bot’s vertical range and bearing communication system—i.e., the area in which
each eye-bot can aggregate foot-bots.

are necessary for a dynamic group size regulating system,

namely stabilisation, redistribution and balancing.

Stabilisation means that the system settles down to an

equilibrium state that is sufficiently stable to allow each

eye-bot to independently determine that equilibrium has

been reached (and therefore that it is reasonable to stop

aggregating and initiate a subsequent behaviour). This is

not trivial when there are insufficient foot-bots to meet the

quotas of every eye-bot.

Redistribution means that a running system can respond

to the dynamic addition or removal of robots of either type,

and efficiently redistribute foot-bots accordingly. We would

expect the natural dynamics of the system to encourage

redistribution, rather than having to use communication to

explicitly coordinate redistribution.

Balancing means that when there are insufficient foot-

bots, the system stabilises in a state where each eye-bot

has filled the same percentage of its quota of foot-bots

(independently of the quota size). This is important as it

ensures that no eye-bots arbitrarily take precedence over

other eye-bots. Consider a future implementation of this

system in which tasks have different priorities. In the

case where there are not enough foot-bots, the balancing

property will ensure that quotas with low priority are not

filled at the expense of quotas with high priority1.

IV. ROBOTIC PLATFORM AND SIMULATION

ENVIRONMENT

We consider a heterogeneous robotic system composed

of two types of robots: aerial robots (eye-bots) and wheeled

robots (foot-bots). Eye-bots are quad-rotor equipped robots

capable of flying and attaching to the ceiling. For the

purpose of this study, we assume that the eye-bots are

always attached to the ceiling. Eye-bots are equipped with

a high resolution camera which allows them to monitor

what happens on the ground [12], see Figure 1(a). Foot-

bots, on the other hand, move around on the ground. They

1In the future, an additional deadlock resolution mechanism will be
needed to allow the system to take meaningful action when the system
stabilises in a state where none of the eye-bot quotas have been filled.
In the priority based system, for example, after stabilisation the eye-bots
could each have a probability of releasing some of their aggregated foot-
bots. These release probabilities could be linked to the priority of each
eye-bot’s task — the higher the priority of an eye-bot’s task, the lower
the probability of releasing foot-bots. Eye-bots with high priority tasks
would thus be likely to fill their quotas at the expense of eye-bots with
low priority tasks. In this study, we focus on the underlying balancing
property that would enable this kind of probabilistic priority mechanism.

are equipped with infrared proximity sensors, an omnidi-

rectional camera, and an RGB LED ring that enables them

to display their state to robots within visual range, see

Figure 1(b).

The eye-bots communicate with the foot-bots using a

range and bearing system [11] mounted on both robots

see Figures 1(c) and 1(d). This system allows the eye-

bots to locally broadcast and receive messages either from

other eye-bots in the same plane, or to foot-bots in a

cone beneath them. Furthermore, the system allows for

situated communication. This means that recipients of a

message know both the content and the physical origin of

the message within their own frame of reference.

At the time of writing, the robotic hardware is still under

development. For this reason, the results presented in this

paper have been obtained in simulation. A custom physics

based simulator called ARGoS [9] has been developed to

reproduce the dynamics of the robots’ sensors and actua-

tors with reasonable accuracy. A screen shot of simulation

environment is shown in Figure 1(e).

V. METHODOLOGY

In our biologically inspired system, we let foot-bots play

the role of cockroaches, while eye-bots play the role of

shelters. Unlike the static shelters in Garnier’s previous

system [2], the eye-bots in our system actively broadcast

varying stop and go probabilities. By changing the stop

and go probabilities that it broadcasts, an eye-bot can

actively influence the number of foot-bots in its group.

Like cockroaches, foot-bots can be moving (state FREE) or

stationary (state IN GROUP). A foot-bot is considered part

of an eye-bot’s aggregate if it is underneath it (i.e., within

range of that eye-bot’s range and bearing communication

signal—see Figure 1(d)) and it is in state IN GROUP.

Foot-bots in state FREE perform a random walk in the

arena. At each time step, each eye-bot i sends a message

containing two pieces of information (that will be received

by any foot-bots underneath it): the probability for a foot-

bot in state FREE to join the group (ji) and the probability

for a robot in state IN GROUP to leave it (q).

Throughout this paper, we use a single experimental

setup to test the various configurations of our system.

We use this experimental setup to test both our abstract

mathematical models and our concrete implementations

on the robotic platform. In particular, we designed the
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Fig. 2. (a) A schema of the mathematical model. (b,c) Experiments run using the mathematical abstraction of the Constant-q strategy for two different
values of q. The eye-bot quotas for both experiments are: eye-bot 1: 15, eye-bot 2: 10, eye-bot 3: 20.

experimental setup to determine whether the different con-

figurations of our system display the desirable properties

discussed in Section III. In our setup, we use a rectangular

arena containing 30 non-aggregated foot-bots and 3 eye-

bots. Our experiment consists of three phases.

In the first phase, only eye-bot 1 and eye-bot 2 are active.

The quotas of eye-bots 1 and 2 are always set so that

their sum is less than 30. This first phase therefore allows

us to test whether the system is capable of stabilising to

the correct group sizes in the simple case where there

are enough foot-bots to satisfy all eye-bot quotas. After

a certain amount of time T1, eye-bot 3 is activated. This

initiates the second phase, in which all three eye-bots are

active. This phase tests the redistribution property of the

system in response to the arrival of a new eye-bot. It also

tests the balancing property of the system, as eye-bot 3’s

quota is always chosen so as to make the sum of the quotas

greater than the total number of foot-bots in the arena. We

also always set eye-bot 3’s quota to be greater than or equal

to the quotas of eye-bot 1 and eye-bot 2, thus requiring the

system to redistribute foot-bots efficiently. The third and

final phase is initiated at time T2 by the disactivation of

eye-bot 2, and again tests both the redistribution and the

balancing properties of the system, this time in response

to the addition of more free foot-bots into the arena. The

stabilisation property of the system can be tested in all

three phases of the simulation based experiments—ideally,

each eye-bot should be able to detect stabilisation in all

phases.

VI. AN INITIAL IMPLEMENTATION

In this section, we describe and analyse a simple im-

plementation of our system. For each eye-bot, we set

the join probability proportional to the eye-bot’s quota of

desired foot-bots. We keep the leave probability common

for all eye-bots and constant over time. Therefore, we

subsequently refer to this implementation as the Constant-

q strategy.

Figure 2(a) illustrates the abstraction of the system that

we use for mathematical analysis. In Figure 2(a), the arena

is rectangular and the communication range of each eye-

bot is drawn as a circular grey area. Let the total number

of foot-bots in the arena be n and the number of foot-bots

aggregated at time step t under eye-bot i be gi(t). Then,

the fraction xi(t) of foot-bots aggregated under eye-bot i

at time t is given by:

xi(t) =
gi(t)

n
.

Analogously, the fraction x0(t) of free (i.e. not part of any

eye-bot’s aggregated group) foot-bots present in the arena

at time t is given by:

x0(t) =
n−

∑n

i gi(t)

n
= 1−

n
∑

i

xi(t).

We define pi and q as constant probability parameters

of our model. During a single time step, each free foot-bot

(i.e., every foot-bot that is not part of any eye-bot’s aggre-

gated group) has probability pi to join the aggregated group

under eye-bot i. Each aggregated foot-bot has probability

q of disaggregating (i.e., leaving the group of foot-bots

which it had previously joined).

Foot-bots perform random walk with obstacle avoid-

ance, thus spreading uniformly in the environment (see

Section VII for details). When a foot-bot enters the com-

munication range of eye-bot i, it joins the aggregate with a

constant probability ji. Under these assumptions, an easy

way to calculate pi is the following:

pi =
Area(eye-bot)

Area(arena)
ji

The analytical expression of the mathematical model is

then:



































x0(t + 1) = x0(t)− (
n

∑

i

pi)x0(t) + q

n
∑

i

xi(t)

x1(t + 1) = x1(t) + p1x0(t)− qx1(t)

...

xn(t + 1) = xn(t) + pnx0(t)− qxn(t)

and by imposing the steady-state condition

∀k ∈ [0, n] xk(t + 1) ≡ xk(t) ≡ x∗

k

we can derive the expression for x∗

k at convergence

(see [10] for the full mathematical derivation):
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x∗

0
=

q
∑n

i pi + q

x∗

1
=

p1
∑n

i pi + q

...

x∗

n =
pn

∑n

i pi + q

Figures 2(b) and 2(c) illustrate the dynamics of our

mathematical model of the Constant-q strategy for two

different values of q. Notice that for q = 0.01 a significant

portion of foot-bots is free when the system reaches its first

equilibrium with two eye-bots, while for q = 0.00001 this

portion is very close to zero. At t = T1, the third eye-bot is

added. Since q > 0, some foot-bots leave their aggregated

groups and a new equilibrium is reached (redistribution).

The value of parameter q affects the speed of convergence2

to the new equilibrium: for q = 0.01 convergence in this

second phase is three orders of magnitude faster than for

q = 0.00001 because many more foot-bots are free to join

eye-bot 3. At t = T2, eye-bot 2 leaves the arena and frees

all its foot-bots. A new equilibrium is quickly reached in

about 100 time steps.

VII. TRANSFERAL ONTO ROBOTIC PLATFORM

A. Counting and Probabilities

In the mathematical model, there is no sense of con-

vergence to a particular number of robots. Each abstract

eye-bot converges to a fraction of the total number of

robots proportional to its join probability (ji). The first

step in transferring our system onto an embodied platform

is, therefore, to introduce the notion of counting.

Counting is achieved by each eye-bot monitoring the

number of foot-bots underneath it using its camera. For

each eye-bot i, when the aggregated foot-bot group size

is smaller than its quota, it must have a non-zero join

probability (ji > 0). As soon as its quota is filled, the eye-

bot prevents any more foot-bots from joining its aggregated

group, by setting its join probability to zero (ji = 0).

Clearly, we must somehow choose values for ji and

q. A natural choice for the value of ji is to consider

the fraction of the maximum foot-bot aggregated group

size represented by the quota of eye-bot i. The maximum

aggregated group size is determined by the physical size of

the foot-bot and the communication range of the eye-bot3.

We therefore set:

ji =
eye-bot i ′s quota

max foot-bot aggregated group size
.

To find a sensible value of q is non–trivial—the impact

of q may even depend on the density of robots in the

arena. An incorrect choice of q can have dramatic effects

on system performance. Note that the mathematical model

treats probabilities pi and q as the rates of free foot-

bots joining and leaving aggregates respectively, while in

2Convergence in the mathematical model is the equivalent of the stabil-
isation property in the embodied robotic implementation (see section VII).

3By manually experimenting with the foot-bot hardware prototype, we
came up with the (approximate) value of 25 as the number of foot-bots
that could aggregate under an eye-bot without being so close as to collide.

reality this is only true as an average over time. In a

realistic implementation, fluctuations are always present

and perturb the expected dynamics of the system. We found

that when q is only one order of magnitude smaller than

pi, the rate of robots leaving eye-bot i’s aggregate over

time is too high, thus making that aggregate unstable. On

the other hand, choosing too low a value for q hinders

redistribution. The role of q in this system is discussed in

more detail in Section VII-F.

B. Physical Interference

The physical dynamics of embodied agents make the

successful transferal of any model onto a real robotic

platform non-trivial. We found that in a naı̈ve imple-

mentation of our system, physical interference between

robots disrupted the effects of the transmitted probabilities,

catastrophically changing the resulting equilibrium. For

example, a moving foot-bot would take a long time to

traverse the space underneath an eye-bot that had already

aggregated a large number of foot-bots, due to the overhead

of using obstacle avoidance to thread a path through the

aggregated foot-bots. In such cases, both arriving (non-

aggregated) and leaving (disaggregating) foot-bots would

repeatedly apply the join probability transmitted by the

eye-bot. As a result, foot-bots tended never to leave large

aggregates.

We also noticed other more direct physical effects. For

example, to let disaggregating foot-bots leave an aggregate,

it was necessary to make the other aggregated foot-bots get

out of the way (using obstacle avoidance). However, this

had the result that aggregated foot-bots positioned near the

edge of an eye-bot’s signal range often got pushed out of

the aggregate by leaving foot-bots.

To get around these issues, we implemented a clustering

technique, in which aggregating foot-bots were attracted to

each other and to the centre of the eye-bot with which they

were associated. Using this clustering algorithm as a base,

our high level foot-bot state transition behaviour was a

much closer match to the behaviour of the mathematical

model presented in the previous section.

C. Clustering Algorithm

Our distributed clustering algorithm uses only local

interactions. We consider each foot-bot to be immersed

in two virtual potential fields. The minimum energy of the

first potential field is at the point of the vertical projection

of the centre of the eye-bot on the ground. The foot-

bots calculate this potential field using information from

the transmitted range and bearing messages coming from

an eye-bot. The second potential field is analogous to

the behaviour of molecules in physical systems. Using its

camera, each aggregated foot-bot measures the distance to

its neighbouring foot-bots and calculates the potential field

whose minimum energy configuration is at distance σS

to all neighbouring foot-bots. Each foot-bot superimposes

its two fields to come up with a resultant force that it

translates into appropriate angular velocities that it applies

to its wheel actuators. The result is that the local system of

aggregated foot-bots converges quickly towards its mini-

mum energy configuration: a hexagonal lattice of foot-bots

centred around the vertical projection of the eye-bot under

which they are aggregating [14].
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Cfree−>free Cin_group−>in_group

leaving−>freeC

Cleaving−>leaving

Cin_group−>leaving

Cin_group−>free

Cfree−>in_group

LEAVING

IN_GROUPFREE

State transition conditions

Cfree→in group WithinRange() = true and Rand() < ji

Cfree→free WithinRange() = false or Rand() > ji

Cin group→free WithinRange() = false

Cin group→leaving WithinRange() = true and Rand() < q

Cin group→in group WithinRange() = true and Rand() > q

Cleaving→free WithinRange() = false

Cleaving→leaving WithinRange() = true

Fig. 3. State transition logic for foot-bots at each time step. WithinRange() is a function returning true when the robot is within the communication
range of an eye-bot. Rand() is a function returning a random number in U(0, 1). ji is the join probability for eye-bot i, q is the common disaggregation
probability. State transition conditions are represented be the symbol C and a subscript. For example, Cin group→in group represents the conditions
under which an aggregated foot-bot will stay aggregated in its group (i.e., will not disaggregate) in a single time step.
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Fig. 4. Convergence detection is based on a tolerance boundary B which
is a function of the leaving probability q, the current size of the aggregate
gi and the length of the monitoring period TC .

Analytically, the potential field attracting a foot-bot

towards the centre of its associated eye-bot at distance rE

is given by:

VE(rE) = ηr3

E

The equation for the second potential field that manages

interactions between two aggregated foot-bots at mutual

distance rF is given by

VF (rF ;σS) = ε

[(

σS

rF

)4

− 2

(

σ

rF

)2]

Thanks to the fact that force ~F (r) = −∇V (r) and defining

r̄E (r̄F ) as the normalised vector pointed from the centre

of the foot-bot towards the centre of the eye-bot (foot-bot),

we can derive

~FE(rE) = −3ηr2

E r̄E

and

~FF (rF ;σS) =
4ε

rF

[(

σS

rF

)4

−

(

σS

rF

)2]

r̄F .

Distance rE is obtained from the range and bearing

sensor, and distance rF from the camera. At each time

step, each aggregated foot-bot calculates ~FE(rE) and
~Fm

F (rm
F ; σS) for each neighbour m. The resulting force

~FIN GROUP = ~FE(rE) +
∑

m

~Fm
F (rm

F ; σS)

is then directly transformed into wheel actuation on the

foot-bot.

A simple extension to this system provides an elegant

solution to allow foot-bots to leave an aggregated group

while causing minimum disruption to the rest of the

group. To differentiate leaving foot-bots, we make them

illuminate their blue LEDs. It then suffices to define an

interaction potential between red (aggregated) foot-bots

and blue (leaving) foot-bots ~FF (rF ;σL) with σL > σS .

This new potential creates a ‘bubble’ in the hexagonal

lattice of aggregated foot-bots around the leaving foot-bot.

The choice of σL is done in such a way that the bubble is

large enough for a leaving foot-bot to pass through. For

leaving foot-bots we also invert the potential field that

attracts it to the eye-bot, resulting in an applied repulsive

potential of −VE(rE). With this extension, the composite

force for an aggregated foot-bot becomes:

~FIN GROUP = ~FE(rE)+
∑

m

~Fm
F (rm

F ;σS)+
∑

l

~F l
F (rl

F ;σL).

For a leaving (blue) foot-bot, on the other hand, the

composite force applied is:

~FLEAV E = −~FE(rE)+
∑

m

~Fm
F (rm

F ;σS)+
∑

l

~F l
F (rl

F ;σL).

D. Foot-bot state transition logic

Using the clustering algorithm as a base, we define three

states that the foot-bots can be in:

• state FREE: Foot-bot does not belong to any eye-bot’s

aggregated group. Foot-bot performs random walk

with obstacle avoidance. This state is signalled with

LEDs lit up in green.

• state IN GROUP: Foot-bot is part of an aggregated

group under an eye-bot. This state is signalled with

LEDs lit up in red.

• state LEAVING: Foot-bot is leaving an aggregated

group to which it previously belonged. This state is

signalled with LEDs lit up in blue.

Eye-bots count the number of foot-bots aggregated be-

neath them by using their cameras to count the number of

foot-bots in state IN GROUP (i.e. lit up in red). Figure 3

shows the state transition logic of foot-bots upon receipt

of a message from an eye-bot.

E. Stabilisation Detection

To detect stabilisation, each eye-bot monitors the fluc-

tuations of the number of its aggregated foot-bots over

a period TC (see Figure 4). If fluctuations stay within

some tolerance boundaries for the entire period, the eye-bot
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(a) Strategy:Constant-q; q = 0.01; Quotas: [15, 10, 20] (b) Strategy:Constant-q; q = 0.00001; Quotas: [15, 10, 20]

(c) Strategy:Decaying-q; Quotas: [15, 10, 20] (d) Strategy:Decaying-q; Quotas: [12, 12, 12]

Fig. 5. Simulation results. Each group of 3 plots (a,b,c,d) describes a set of 20 experiments conducted with a particular system configuration. For
each set, the top graph represents a single representative experiment that we selected from the set of 20, the middle graph shows the average results
of all experiments (bars at selected times indicate std.dev.), the bottom graph shows the percentage of each eye-bot’s quota that is filled. In every
experiment, eye-bots 1 and 2 are active at the start of the experiment, eye-bot 3 is introduced at time T1 = 50 s, eye-bot 1 leaves the experiment at
time T2 = 250 s. Quotas for eye-bots 1, 2 and 3 are given in correspondingly ordered square brackets, and shown by the correspondingly numbered
symbols D1, D2, D3. Symbols C1, C2, C3 indicate the moments at which the correspondingly numbered eye-bot detected stabilisation.

considers the system to have stabilised to its steady state.

The tolerance boundary B is defined as a function of the

leaving probability q, the current size of the aggregate gi

and the length of the monitoring period TC :

B =
√

TCgiq(1− q)

B is derived by considering the changing number of

aggregated foot-bots under an eye-bot as a time series. B

is simply the formula for the standard deviation of such a

time series over a given monitoring period.

F. Results

Figures 5(a) and 5(b) show the results of experiments

using the Constant-q model with simulated robots. Look-

ing at the sample run (top plots), we can clearly see

that a lower value for q (0.00001) makes stabilisation

possible (Figure 5(b)). With the higher value of q (0.01)

(Figure 5(a)), there was too much noise in the system for

stabilisation to be detected. However, using the lower value

of q, the system does not display effective redistribution

or balancing. Looking at the middle and bottom plots, we

can see that for both q values, on average eye-bots 1 and

2 successfully aggregate the correct number of foot-bots

between time 0 s and time T1 (with the higher value of

q displaying more noise). Once eye-bot 3 is introduced

at time T1, with q = 0.00001 the system does not

display redistribution and balancing— the system arrives at

equilibrium with eye-bot 3 having fulfilled a much smaller

percentage of its quota than eye-bots 1 and 2. By contrast,

with q = 0.01, the system displays effective redistribution
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Fig. 6. Decaying-q strategy. Dynamics of the mathematical model. Eye-
bots 1 and 2 are introduced at t = 0, Eye-bot 3 is introduced at t = 500,
Eye-bot 1 leaves at t = 1000.

and balancing—after the introduction of eye-bot 3, the

system on average quickly arrives at an equilibrium where

all three eye-bots have filled the same percentage of their

quota.

VIII. DECAYING-q STRATEGY

Experiments in the previous section indicate that the

Constant-q strategy allows the system to display the re-

distribution property or the stabilisation property but not

both at the same time. To solve this problem, we modify

our system so that individual eye-bots vary q between

two values during system execution—a high q value (q =
0.05) that allows for efficient foot-bot redistribution, and

a low q value (q = 0.00001) that encourages stabilisation.

Parameter q is ‘spiked’ to the high value when the system

starts, and whenever an eye-bot is activated or deactivated.

After a spike, q is exponentially decayed to the low value

over 20 seconds and then remains at the low value until

the next spike.

The dynamics of a mathematical model of this strategy

are shown in Figure 6. We can see that the new system

shares the positive features of the previous linear model

using both high and low q. After the introduction of eye-bot

3, the new system converges even faster than the previous

Constant-q model with the high q of 0.01.

On the embodied robotic platform, at the moment that an

eye-bot either enters the system or leaves the system, the

eye-bot uses its horizontal range and bearing system (see

Figure 1(d)) to communicate to local eye-bots that they

should spike their q values. The results of running this

model with the simulated robots are shown in Figure 5.

We have run the system with three eye-bots, but with two

different sets of target quotas—[15,10,20] (Figure 5(c)) and

[12,12,12] (Figure 5(d)). In both cases, we can see that the

system displays stabilisation, redistribution and balancing.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we adapted an existing model for cock-

roach aggregation, in which the group sizes were deter-

mined a priori by the environment, and transformed it

into an active model that could dynamically control group

size. We demonstrated properties of our system with a

mathematical analysis, then showed how the system could

be implemented using simulated versions of a real-world

robotic platform. We enhanced our system to show that

the seemingly contradictory goals of redistribution and

stabilisation could be achieved by a single system.

We believe that the underlying dynamics of our system

are sufficiently simple that they could be implemented in

other heterogeneous robotic platforms. To this end, we

think it would be interesting to try other less explicit

communication modalities (e.g. light intensity) as a means

of transmitting probabilities.

We are currently investigating the scalability of the

system as we introduce larger numbers of eye-bots. By

leveraging local communication, we aim to restrict the

effects of perturbations (introduction and removal of tasks

and/or robots) to local regions of the system. We are also

trying to embed our system as part of a more complete task

execution scenario, of the type outlined in the introduction.
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