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Abstract— In this paper, we present a heterogeneous recruit-
ment system which allows aerial robots to recruit groups of
wheeled robots. The system is novel because it is self-organized,
is based only on simple probabilistic rules and relies only
on local communication. Our approach is inspired by the
aggregation behavior of cockroaches. The system allows aerial
robots to recruit wheeled robot groups of different sizes in
parallel. Although governed by probabilistic rules, we show that
our system stabilises to a steady state distribution of wheeled
robots that corresponds to the desired sizes of recruited groups.
The system can also handle perturbations as robots enter and
leave the system during execution—robots are redistributed
accordingly and the system will once again stabilise. The system
also displays sensible behaviour when there are not enough
wheeled robots to satisfy the recruitment quotas. We conduct
experiments based on physically embodied simulation of the
robots to demonstrate these properties of the system, and to
explore the scalability of our system.

I. INTRODUCTION

In this paper, we consider a heterogeneous swarm of
flying and wheeled robots, called eye-bots and foot-bots
respectively. When this heterogeneous swarm is deployed
into an environment, the eye-bots search for tasks, and then
recruit groups of foot-bots to perform the various tasks they
have found. The size of the recruited groups varies depending
on the size and nature of the tasks.

In this study we focus on the recruitment aspect of the
above scenario. Designing a recruitment mechanism for a
swarm of robots is non trivial. A simple recruitment solution
based on point to point communication could be imple-
mented, in which a recruiting eye-bot communicates in turn
with one foot-bot at a time. However, using such a solution
it is not clear how multiple eye-bots could recruit groups of
foot-bots at the same time, at least not without introducing
more explicit point to point communication between the eye-
bots (that would then have to negotiate over individual foot-
bots). Such a system would scale very badly, as the number
of point to point communication messages would increase
exponentially with the number of robots in the system.

Instead, we propose a distributed recruitment mechanism
inspired by the aggregation behaviour of cockroaches un-
der shelters (see Section II). Communication is restricted
to strictly local broadcast communication. Eye-bots recruit
groups of foot-bots by broadcasting join and leave proba-
bilities to any foot-bot that is in an area directly beneath
them. Unrecruited foot-bots perform a random walk. Once
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the system has reached its steady state distribution, groups
of foot-bots can be deployed to perform their various tasks.

Our control is completely distributed, and we rely only on
local communication. The use of such self-organising princi-
ples tends to lead to robust, scalable platforms [1]. However,
the behaviour of such system is often hard to predict. In this
paper, we conduct a series of physically embodied simulation
experiments to confirm that our recruitment system displays
desirable properties, and to test the system’s scalability.

We experimentally demonstrate that our system displays
the required property of stabilisation: the system reaches an
equilibrium that is sufficiently stable that it can be detected
by the individual eye-bots.

In addition, for our system to ever be useful in the real
world, it would need to be effective in a dynamically chang-
ing environment, and therefore would need to cope with the
arrival and departure of eye-bots and foot-bots while the
system is running. We demonstrate experimentally that our
system displays the required property of redistribution: the
system is able to dynamically redistribute foot-bots among
recruiting eye-bots, and once again arrive at a stable steady
state.

Another constraint is that at any given moment in time,
there may not be enough foot-bots available to fill the quota
of every eye-bot (quota refers to the desired group size
of a single eye-bot). We demonstrate experimentally that
our system displays the required property of balancing: the
system settles to a state where each eye-bot has filled the
same percentage of its quota of foot-bots (independently of
the quota size). In a system that did not display this property,
small quotas might always fill up at the expense of larger
quotas (or vice-versa)1.

II. RELATED WORK

Several centralized and communication-based techniques
for recruitment and task allocation in multi-robot systems
have been proposed, see for example [3], [7], [8]. In so-
cial insects such as ants and bees, recruitment plays an
important role in, for instance, food source exploitation. The
ants Leptothorax acervorum, L. muscorum, L. nylanderi and
Temnothorax albipennis are known to be able to recruit nest
mates using a combination of pheromone secretions and a
guidance technique called tandem running [16], [4]. When

1When there are not enough foot-bots, an additional deadlock resolving
mechanism would need to be implemented in the future—one solution might
be to let eye-bots that have stabilised at a group size that is below their quota
probabilistically release their own recruited foot-bots to help other eye-bots
fill their quotas. However, for such a mechanism to be implemented the
system would require stabilisation and balancing as prerequisites.
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performing tandem running, the recruiting ant periodically
waits for the recruited ant which in turn touches the recruiter
to indicate that it can continue. Krieger and Billeter [11] have
demonstrated an approach inspired by tandem running on
real robotic hardware. However, the technique only allows
for one robot to be recruited at a time.

There is a large body of literature on heterogeneous robotic
groups [19], [24]. Gage and Murphy [5] have, for instance,
demonstrated how a single unmanned aerial vehicle (UAV)
can recruit unmanned ground vehicles (UGVs) in a landmine
detection task. However, to the best of our knowledge,
no existing robotic study investigates group size regulation
in heterogeneous robot groups. Group size regulation is
important in tasks ranging from search and rescue, where
a certain number of robots may be required to shift a victim
or a heavy object [9], to rough terrain navigation where an
appropriate number of robots need to collaborate in order to
overcome certain obstacles [17], [2].

There is some literature on aggregation and group size
regulation in homogeneous groups. Dorigo et al. [13] evolved
two dimensional distributed aggregation in a swarm of em-
bodied robots, Martinoli et al. [14] investigated the effects
of probabilistic parameters on the size of object clusters
collected by Khepera robots. Neither work provided an
explicit group size control mechanism. Melhuish et al. [15]
controlled group sizes in a swarm of abstracted agents using a
firefly-like synchronisation mechanism. However, group size
control was not fine grained to the level of individual robots,
only one group was formed at a time and the physics of an
embodied system was not taken into account.

Our approach is inspired by the aggregation behaviour
of cockroaches. This behaviour is accurately mimicked by
Jeanson’s et al. model [10] in which cockroaches can prob-
abilistically switch from resting to performing a random
walk and back. The likelihood of resting rather than random
walking increases with the number of other nearby resting
cockroaches. A positive feedback mechanism then results
in aggregation into groups. Other experimental evidence
also shows that cockroaches prefer to aggregate in dark
places [23]. When multiple dark shelters are available in the
environment, the majority of cockroaches aggregate under
only one shelter rather than spreading evenly (even when
the shelters are identical) [12].

Garnier et al. [6] used Jeanson’s behavioral model to show
that a group of cockroach-like robots can achieve a collective
choice between two different shelters in the environment
through simple local interactions.

III. ROBOTIC PLATFORM AND SIMULATION
ENVIRONMENT

Our system comprises eye-bots (Figure 1(a)) and foot-bots
(Figure 1(b)). Eye-bots are quad-rotor equipped aerial robots
capable of flying and attaching to the ceiling. Although our
overall scenario uses the flying capabilities of the eye-bots,
in this study our experiments always consider the eye-bots
to be attached to the ceiling. Eye-bots are equipped with a
high resolution camera which allows them to monitor what

(a) Eye-bot (b) Foot-bot (c) Range and Bearing Sensor
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ground foot−bot communication radius = 0.728 m

eye−bot

(d) Range and Bearing Communication Range

Fig. 1. Heterogeneous Robotic Platform. (a,b) The robots. (c) The range
and bearing sensor. (d) Diagramatic representation of the communication
range of the range and bearing sensor.

happens on the ground [22]. Foot-bots are mobile robots that
use a combined system of track and wheels to move. They are
equipped with infrared proximity sensors, an omnidirectional
camera, and an RGB LED ring that enables them to display
their state to robots within visual range.

Communication between eye-bots and foot-bots is
achieved through a range and bearing system [21] mounted
on both robots. This system allows the robots to broadcast
and receive messages either from neighbors in the same
plane, or in a cone above the foot-bots or beneath the eye-
bots. Furthermore, the system allows for situated communi-
cation, meaning that recipients of a message know both the
content of the message and the spatial origin of the message
(in their own frame of reference), see Figures 1(c) and 1(d).

At the time of writing, the robotic platform is still under
development. The results presented in this paper have thus
been obtained in simulation. A custom physics based simu-
lator called ARGoS [20] has been developed to reproduce
the dynamics of the robots’ sensors and actuators with
reasonable accuracy (see Figure 4(left)).

IV. OUR APPROACH

Our approach is inspired by Jeanson’s aggregation model
of cockroaches under shelters [10]. Eye-bots play the role of
the shelters, while foot-bots play the role of cockroaches.
Previous robotic systems have mimicked the aggregation
behaviour of cockroaches, thus preserving the property that
the aggregate group size was passively dependent on initial
conditions. Our approach is original in that we transform
the stop/go probabilities into join/leave group probabilities
computed and transmitted by the eye-bots, thus allowing the
system to actively control the distribution of recruited foot-
bot group sizes.

In our system, all recruitment takes place in a central
recruitment area. Foot-bots not currently engaged in task
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execution gather in the recruitment area. Eye-bots return to
the recruitment area to recruit groups of foot-bots. Foot-bots
move much more slowly in the environment than the flying
eye-bots. The centralised recruitment area thus is much less
expensive in terms of both time and expended energy than
any alternative system of allocating foot-bots to tasks that
would require the foot-bots to spread in the environment.

Foot-bots can be in one of three states:
• state FREE: The foot-bot is not recruited. The foot-bot

performs random walk with obstacle avoidance. This
state is signaled with the foot-bot’s LEDs lit up in green.

• state RECRUITED: The foot-bot has been recruited by an
eye-bot. This state is signaled with the foot-bot’s LEDs
lit up in red.

• state LEAVING: The foot-bot is leaving a group of
recruited foot-bots to which it previously belonged. This
state is signaled with the foot-bot’s LEDs lit up in blue.

Eye-bots influence the size of their recruited group of foot-
bots by actively changing the join and leave probabilities
that they broadcast. Each eye-bot has a quota (i.e., a desired
group size) of foot-bots that it is trying to recruit. The join
probability ji for each eye-bot is set proportional to the size
of its quota. Once its quota is filled, the eye-bot prevents any
more foot-bots from joining its aggregated group by setting
its join probability to zero (ji = 0). Figure 2 shows the state
transition logic of foot-bots upon receipt of a message from
an eye-bot.

Eye-bots obtain the number of foot-bots aggregated be-
neath them by using their cameras to count the number of
foot-bots in state RECRUITED (i.e., lit up in red).

Through mathematical analysis and experimentation con-
ducted in a previous study [18], we established an appropriate
way to set the leave probabilities qi for each eye-bot. We
found that high values of qi led to a highly flexible system,
but discouraged system stability. On the other hand, low
values for qi led to stable systems, but discouraged redis-

tribution: the redistribution of foot-bots through the system
was difficult as eye-bots rarely released recruited foot-bots.
Our solution is to let the eye-bots vary qi between two values
while the system is running—a high value (qmax = 0.05)
that encourages redistribution, and a low value (qmin =
0.00001) that encourages stability. Parameter qi is ‘spiked’
to the high value when the system starts, and whenever the
system is perturbed by the arrival or departure of an eye-
bot. After an eye-bot spikes its qi value, the qi value is
then linearly decayed over Tdec time steps until it arrives
at qmin, at which it remains until the next spike. Modifying
qi dynamically in this way allows the system to redistribute
effectively at moments when the fast transfer of foot-bots is
desirable, but nonetheless to stabilise as qi decreases.

To detect stabilisation, each eye-bot continually checks if
the fluctuations in the number of its recruited foot-bots have
stayed within some tolerance boundary for a given length of
time. A more detailed discussion of the parameter settings
we have chosen, an analysis of the effects of the various
parameters and the definition of the stabilisation boundary
condition can be found in [18].

V. TWO ROBOT EXPERIMENTS

We conducted two sets of experiments in a rectangular
arena with 30 foot-bots and 3 eye-bots (see Figure 3). In
the first set of experiments we used eye-bot quotas of 15,
10 and 20. In the second set of experiments, we used eye-
bot quotas of 12, 12 and 12. There are three phases in each
experiment. In the first phase, only eye-bot 1 and eye-bot
2 are active. This first phase allows us to test whether the
eye-bots recruit the correct number of foot-bots in the simple
case where there are enough foot-bots to satisfy all eye-bot
quotas. The second phase starts at time T1 with the activation
of eye-bot 3. Eye-bot 3 now has a quota equal to or greater
than the quotas of the other eye-bots in the system, thus
providing a good test for the redistribution capability of our
system. In addition, with the addition of eye-bot 3, the sum
of the quotas becomes greater than the total number of foot-
bots in the arena. We can therefore also test the balancing
property of the system. The third and final phase is initiated
at time T2 by the disactivation of eye-bot 2, and again tests
the redistribution and balancing properties of the system,
this time in response to the addition of more free foot-bots
into the arena. Stabilisation can be tested in each of the three
phases of the experiment.

In both quota sets, eye-bots 1 and 2 successfully stabilise
to the correct number of foot-bots between time step 0
and time step T1. After the introduction of eye-bot 3, the
system on average quickly settles to an equilibrium where
all three eye-bots have filled the same percentage of their
quota, showing that the system also displays the balancing
property.

VI. SCALABILITY EXPERIMENTS

A. Experimental Setup

To test the scalability of our system, we set up experiments
with larger numbers of eye-bots. For simplicity, we consider
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Fig. 3. Results of two-robot experiments. Both groups of 3 plots (a,b) describe the results of a set of 20 experiments. The top graph represents a single
representative experiment that we selected from the set of 20, the middle graph shows the average results of all experiments (bars at selected time steps
indicate the standard deviation), the bottom graph shows the percentage of each eye-bot’s quota that is filled (here referred to as satisfaction avg). In our
simulations, a single time step corresponds to 100 ms of real time. In every experiment, eye-bots 1 and 2 are introduced at time step 0, eye-bot 3 is
introduced at time step T1 = 5, 000, eye-bot 1 leaves the experiment at time step T2 = 25, 000. Eye-bot quotas are indicated by symbols D1, D2, D3.
Symbols C1, C2, C3 indicate the moments at which the correspondingly numbered eye-bot detected system stabilisation. The decaying period of qi is set
to Tdec = 2, 000.

Fig. 4. Snapshot from scalability experiments. Left: Simulation snapshot.
Right: Abstracted representation of this simulation snapshot—the grey
intensity level of each square is proportional to the recruited group size
of the correspondingly positioned eye-bot (i.e., to the number of foot-bots
recruited by that eye-bot).

the centralised recruiting area to consist of a square grid
of eye-bots (we use varying numbers of eye-bots in our
different scalability experiments). A snapshot from one of
our experiments is shown in Figure 4.

In all of the experiments in this section, every eye-bot has
a recruitment quota of 25 foot-bots to fulfil. Although this
quota parity would not be very likely in a real deployment
scenario, this simplification allows us to concentrate our
analysis on other properties of the system, without being
distracted by the role of different quota sizes on our results.

B. Stabilisation and Balancing

In this section, we describe a series of experiments that
we ran to test the stabilisation and balancing properties of
our system with larger numbers of eye-bots. For each set of

experiments in this section, the number of foot-bots in the
system is set to 20 × the number of eye-bots. Therefore,
when foot-bots are distributed in a balanced way, we would
expect the system to stabilise at group sizes of around 20
foot-bots per eye-bot. Each experiment is run for a total of
7,500 time steps, each step being 100 ms long, for a total
real time of 750 s.

The results for 16 eye-bots and 25 eye-bots can be seen in
Figure 5. In the sample runs (top plots) for both the 16 eye-
bot and 25 eye-bot experiments, the snapshots (grids of grey
squares) show that the system is growing in a balanced way.
The grey intensities for all of the squares in any particular
snapshot are quite homogeneous. The grey intensities get
darker as the experiment continues, corresponding to the
growing recruited group sizes.

In these experiments, Tdec is set to 3,500 time steps
(350 s). This explains why during the first 4,000 steps (400 s)
of the experiment, the size of the recruited groups fluctuate
considerably. This is evident in the central plots of Figure 5
which show a sample experiment taken at random among
the 80 that have been run. Despite the initial fluctuations
due to the system’s initialisation of qi = qmax the system
correctly stabilises, and the last 2,500 steps of the simulations
are smooth in the individual experiment as well as in the
averaged results.

C. Redistribution

In this section, we describe a series of experiments that
we ran to test the redistribution property of our system with



(a) 16 eye-bots in a 4x4 recruiting area. 320 foot-bots. (b) 25 eye-bots in a 5x5 recruiting area. 500 foot-bots.

Fig. 5. Scalability experiments testing the stabilisation and balancing properties of the system. Results are shown for two sets of experiments with 16
eye-bots (a) and 25 eye-bots (b). 80 experimental runs per set of experiments. The top plots show the behaviour of the system in a single sample experiment
that we have selected. The grids of squares represent snapshots of the state of the system at given moments in time during this sample experiment. The
grey intensity of each individual square corresponds to the number of foot-bots recruited at that time by a single eye-bot. The min and max lines show the
size of the largest recruited group of foot-bots and the size of the smallest recruited group of foot-bots at any given moment. The 1Q–3Q area shows the
inter-quartile range of the distribution of recruited group sizes among the eye-bots. The 1Q is the first quartile and shows the minimum recruited group
size once we discard the lowest 25% of groups. The 3Q line is the third quartile, and shows the maximum recruited group size once we discard the highest
25% of the data. The bottom plot shows the same data averaged over all 80 runs.

larger numbers of eye-bots. To do this, we run experiments
in which we perturb the system while it is running and see
how well the system succeeds in redistributing foot-bots in
response to the perturbation.

As these experiments are longer and more computationally
expensive, we use a 3x3 formation of 9 eye-bots. We perturb
the system by either activating or disactivating an eye-bot at
time step 7,500 (after 750 s). The activation of an eye-bot
corresponds in a dynamic real world scenario to the arrival
of a new recruiting eye-bot in the recruitment area. The
disactivation of an eye-bot results in the release of more
free foot-bots into the system, and thus corresponds in a
dynamic real world scenario to the return of foot-bots that
have successfully completed a task to the recruitment area.
We always perturb either the central eye-bot in the 3x3
formation or the eye-bot in the lower right hand corner.

In these experiments, we assume that at the moment an
eye-bot either activates or disactivates, it sends a signal to
its immediate neighbours (those eye-bots within a radius of
2.828 m). This signal induces the neighbouring eye-bots to
spike their qi. These immediate neighbours also propagate
the signal, and in this way, the entire swarm spikes qi to
qmax. The perturbation effects of an eye-bot activation or
disactivation event are thus applied throughout the whole
swarm of eye-bots.

The results of these experiments can be seen in Figure 6.
In each of the four experimental sets, both the snapshots

from the sample run and the average dynamics show that the
system stabilises before the perturbation event. More inter-
estingly, the final snapshots in each of the four experimental
sets are relatively homogeneous in their grey intensity levels,
showing that in the sample runs the system succeeded in
redistributing foot-bots. The relatively narrow max-min and
inter-quartile ranges in all four experiments indicate that this
was also true on average.

Looking at the averaged data (4 bottom plots), we can
see that the type of perturbation event seems to play a more
important role in the system’s ability to redistribute foot-bots
than the location of the eye-bot that caused the perturbation
event. In particular, the max-min and inter-quartile ranges
for the experiments in which an eye-bot disactivated (re-
distribution of foot-bots released from disactivated eye-bot
to the 8 other eye-bots) are much closer together than the
corresponding ranges for the experiments in which an eye-
bot activated (redistribution of foot-bots from 8 already active
eye-bots to newly activated eye-bot). In contrast, for the
same type of perturbation event (activation or disactivation)
there seems to be little difference between the average max-
min and inter-quartile ranges for the experiments in which
a corner eye-bot was perturbed or the center eye-bot was
perturbed.



(a) Corner Robot Activates at Time step 7,500 (b) Centre Robot Activates at Time step 7,500

(c) Centre Robot Disactivates at Time step 7,500 (d) Corner Robot Disactivates at Time step 7,500

Fig. 6. Set of experiments testing the redistribution property of the system. All experiments run with 9 eye-bots and 180 foot-bots in a recruitment area
consisting of a 3x3 eye-bot formation. Results are shown for four sets of experiments (a,b,c,d). Each experimental run lasts for 15,000 time steps (1,500 s).
20 experimental runs were conducted for each set of experiments. Top plots in each set represent selected sample runs, while bottom plots represent data
averaged over all 20 runs. For a more detailed explanation of the plots see previous caption from Figure 5.



(a) (b)

Fig. 7. Set of experiments on local perturbation. In these experiments, the propagation of the q-spiking signal is limited to the direct neighbours. Results
are shown for two sets of experiments (a,b). 20 experimental runs were conducted for each set of experiments. Each experimental run lasts for 15,000
time steps (1,500 s). Top plots in each set represent selected sample runs, while bottom plots represent data averaged over all 20 runs. For a more detailed
explanation of the plots see previous caption from Figure 5.

D. Ongoing Work

In the previous section, knowledge of a perturbation
event (i.e., an eye-bot activating or disactivating) propagated
through the whole system. As a result, every eye-bot spiked
its qi probability at almost the same moment.

This type of global propagation, however, only allows for a
minimum interval between new perturbation events into the
system that is equal to or greater than Tdec. (Perturbation
events include the arrival of new recruiting eye-bots in the
recruitment area and the return of foot-bots to the recruitment
area that have completed their task.) Ignoring this constraint
on the maximum event rate would mean that the system
would never stabilise, as all of the qi rates would spike again
before qmin was reached.

In larger dynamic environments with many tasks, however,
this constraint might be very limiting. One solution might
be to implement some kind of perturbation event queueing
system, but this would just shift the problem, as the queues
would grow longer and longer if there were too many tasks
in the environment.

We are currently working on ways of solving this problem.
Our first attempt involves limiting the propagation of the
q-spiking signals to a locally limited neighbourhood of eye-
bots centered around the eye-bot that created the perturbation
event. In this way, only a small portion of the eye-bots in the
recruitment area would be perturbed by incoming requests,
thus letting the rest of the system stabilise undisturbed.

Preliminary experiments with 4x4 and 5x5 grids show
that this method effectively lets a small portion of the
system balance, as shown in Figure 7. In these experiments,

the corner eye-bot is initially deactivated. Similarly to the
experiments in the previous section, after 7,500 time steps
the eye-bot switches to the active state and sends a q-spiking
signal to its neighbours. However, in these new experiments,
eye-bots that receive the signal do not propagate the signal
to their neighbours. The only eye-bots that spike their qi

are therefore the immediate neighbours of the eye-bot that
perturbs the system when it activates.

As the results show, at the final steady state the distribution
of foot-bots is clearly divided in two distinct zones: one zone
around the eye-bot that perturbs the system, and a second
zone that includes all the other eye-bots (i.e., those that did
not spike their qi). The foot-bot distribution in the second
(undisturbed) zone is practically identical at time steps 7,499
(steady state just before eye-bot activation) and at time step
14,999, showing that the effects of the perturbation event
have remained largely local. In contrast, the homogeneous
grey levels in the first zone show that local redistribution
has been effective.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel self-organised re-
cruitment mechanism for heterogeneous aerial and wheeled
robots. Our recruitment system is self-organised and relies
only on local communication.

We ran experiments with simulated physically embodied
agents. We showed that our system is stable, and can
redistribute robots when perturbed. The system also responds
sensibly in the case when there are not enough robots
to fulfil all of the recruitment quotas. We ran scalability



experiments with up to twenty-five aerial robots and five-
hundred wheeled robots and demonstrated that our system
continued to perform as we increased the number of robots.

We believe that the underlying dynamics of our system are
sufficiently simple that they could be implemented in other
heterogeneous robotic platforms. To this end, we think it
would be interesting to try other less explicit communication
modalities (e.g., light intensity) as a means of transmitting
probabilities.

Longer term goals involve embedding our system as part
of a more complete task execution scenario, of the type
outlined in the introduction.
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[13] Dorigo M., Trianni V., Şahin E., Gross R., Labella T. H., Baldassarre
G., Nolfi S., Deneubourg J.-L., Mondada F., Floreano D., and Gam-
bardella L. M. Evolving self-organizing behaviors for a swarm-bot.
Autonomous Robots, 17(2-3):223–245, 2004.

[14] A. Martinoli, A.-J. Ijspeert, and F. Mondada. Understanding collective
aggregation mechanisms: from probabilistic modelling to experiments
with real robots. Robotics and Autonomous Systems, 29:51–63, 1999.

[15] C. Melhuish, O. Holland, and S. Hoddell. Convoying: Using chorusing
to form travelling groups of minimal agents. Robotics and Autonomous
Systems, 28:207–216, 1999.

[16] M. Moglich, U. Maschwitz, and B. Holldobler. Tandem calling: a new
kind of signal in ant communication. Science, 186(4168):1046–1047,
1974.

[17] R. O’Grady, R. Groß, F. Mondada, M. Bonani, and M. Dorigo. Self-
assembly on demand in a group of physical autonomous mobile robots
navigating rough terrain. In Proceedings of ECAL 2005, volume 3630
of LNAI, pages 272–281. Springer Verlag, Berlin, Germany, 2005.

[18] R. O’Grady, C. Pinciroli, A. L. Christensen, and M. Dorigo. Su-
pervised group size regulation in a heterogeneous robotic swarm. In
Proceedings of ROBOTICA 2009 - 9th International Conference on
Autonomous Robot Systems and Competitions, pages 113–119. IPCB,
Castelo Branco, Portugal, 2009.

[19] L. E. Parker. ALLIANCE: an architecture for fault tolerant multi-
robot cooperation. IEEE Transactions on Robotics and Automation,
14(2):220–240, 1998.

[20] C. Pinciroli. Object retrieval by a swarm of ground based robots driven
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