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Abstract. We present a set of experiments in which a robotic swarm
manages to collectively explore the environment, forming a path to nav-
igate between two target areas, which are too distant to be perceived by
an agent at the same time. Robots within the path continuously move
back and forth between the two locations, exploiting visual interactions
with their neighbours. The global group behaviour is obtained through
an evolutionary process and presents emergent properties like robustness,
path optimisation and scalability, which recall ants trail formation.

1 Introduction

Exploration and navigation in unknown environments represent basic activities
for most animal species, and efficient strategies can make the difference between
death and survival. For this reason, Nature presents a wide range of possibilities,
each particularly adapted to the task to be accomplished and to the sensory-
motor and cognitive abilities of the species under observation. In primates, as
well as in other animals, navigation abilities are usually linked to mental repre-
sentations of the environment, referred to as “cognitive maps”. For instance, it
has been found that specific neurons of the rodents hippocampus (called “place
cells”) have a high firing rate in correspondence of specific locations in the envi-
ronment [15]. Neural representations seem to characterise also the behaviour of
insects. A map-like organisation of spatial memory has been proposed for hon-
eybees, which are able to retrieve the navigation path on the basis of learned
landmarks around the hive [12]. A similar strategy is employed also by the desert
ants of the genus Cataglyphis, which however couple the landmark-base strategy
with their skylight (polarization) compass and path integrator (ants integrate
over time the path covered through a sort of vector summation) that allow them
to return to the nest following a straight line [21]. Ant species that forage in
groups rely on a collective strategy for exploration and navigation, exploiting
the well known mechanism of pheromone trail formation: when moving from a
foraging patch to the nest, ants lay a blend of pheromones that can be exploited
by other ants to reach the same patch. Thanks to this strategy, ants can ef-
ficiently navigate in the environment and optimise the path between nest and
food [7,2].



In Robotics too, much attention has been paid to the navigation and explo-
ration problems, and several different strategies have been proposed. Map-based
navigation exploits probabilistic approaches to solve the so called simultaneous
localisation and mapping (SLAM) problem [18,1], as well as biologically in-
spired ones [4,9,6]. Similarly, landmark-based navigation and path integration
have been exploited, often with a close look at biology [23,8,10,20]. For what
concerns collective strategies inspired to the ants trails, however, research has to
confront with the complex problem of finding an alternative to the pheromones,
given that chemical substances are difficult to exploit in a robotic setup. Instead
of chemicals, the most common approach is to rely on communication and mes-
sage passing among robots, which therefore simulate pheromone attributes on a
communication network [17]. Other approaches exploit the robots themselves as
markers for the trail: marker robots remain static and signal a path between two
locations in the environment, while explorer robots exploit this path to efficiently
navigate (3,22, 16, 14].

In this paper, we study the abilities of a robotic swarm to explore an en-
vironment and coordinately navigate between two target areas by exploiting
a simple form of visual communication. We start from two basic assumptions
about the usage of communication signals. On the one hand, communication can
be exploited to signal the position of a target zone to the other robots, therefore
facilitating the exploration task. For this purpose, robots are provided with a
red LED positioned on their back, which has the same colour of the target area
and therefore elicits the same effect of the visual perception of a target area [11].
On the other hand, communication can be used to coordinate the movements of
the robots in the environment, therefore supporting the navigation task. For this
purpose, robots are provided with a blue LED on their front, which can signal
their position and heading to other robots.

By exploiting evolutionary robotics techniques [13,5], we study the emer-
gence of behavioural and communication strategies. Evolutionary robotics is par-
ticularly useful to synthesise self-organising collective behaviours, characterised
by properties such as robustness, flexibility and scalability [19]. We analyse the
system trying to identify the relevant properties of the evolved behaviours for
what concerns both the individual rules followed by the robots, and the commu-
nication signals exploited. Despite not explicitly required by the fitness function,
the evolved behaviour presents features that are similar to the trail formation
in ants: robots form a trail between the target areas and robustly maintain it,
also optimising the shape towards the shortest path (see Sec. 3). Moreover, we
analyse the generalisation and scalability property of the collective behaviour,
by testing it in different environmental conditions and with larger swarms (see
Sec. 4). Discussions are reported in Sec. 5.

2 Experimental setup

The experimental scenario involves a swarm of wheeled robots, whose behaviours
have been evolved for the ability to navigate back and forth as quickly as possible



between two target areas, located within an arena surrounded by walls (Fig. 1).
Since target areas can be perceived only from a short distance, the robots should
be able to find them by exploring the environment. Moreover, in order to quickly
navigate from one target area to the other without relying on time-consuming
exploratory behaviours, the robots should be able to preserve, in some way, some
information concerning the location of previously visited areas. Since the robots
are rewarded on the basis of the efficiency with which each individual is able to
accomplish the task (see eq. (3)), the evolutionary process might potentially lead
to the development of non-cooperative solutions in which the fact to be part of a
swarm does not provide any advantage. However, as we will see, the evolutionary
process rather leads to strategies in which the robots coordinate and cooperate
to find the target areas. In particular, the problem of preserving a trace of the
position of previously visited areas is solved by generating and maintaining a
dynamic path that connects the two target areas, which allows the individuals
of the swarm to efficiently navigate between them. In this section, we detail the
experimental setup and the evolutionary algorithm used.

2.1 The robots and the environment

Ten simulated robots are placed in a rectangular arena (height H = 250 cm;
width variable within the interval W € [250, 290] cm). The target areas consist in
two circles painted in grey (diameter d = 32 cm). A target area can be perceived
from distance by the robot thanks to a red LED placed over its centre. This
red LED is indistinguishable from the one provided to the robots (see below).
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Fig. 1. The experimental setup. On the left, a snapshot of the simulated environment
is shown. Ten robots randomly positioned in the environment are represented as small
circles. The grey disks represent the circular target areas with a red LED in the cen-
tre. The distance between the area centres is D = 70 cm, while the arrows indicate
which is their maximum displacement, when D = 150 cm. In the centre, we show a
schematic representation of the robot’s vision sensors, indicating the sectors and the
perceptual range.The blue and red LED position is indicated as a white and a gray dot,
respectively. On the right, the architecture of the robots’ neural controller is shown.



The two areas are positioned symmetrically with respect to the centre of the
arena at a fixed distance D (see Fig. 1). Each robot is provided with two motors
that control two wheels, providing a differential drive motion (maximum speed:
Umaz = 8.2 cm/s). Moreover each robot is provided with a blue LED on the
front and a red LED on the rear of its body. Both can be switched on and off
by the robot controller. Additionally, a robot is provided with: (i) 8 infrared
sensors uniformly distributed around the robot body, used to detect obstacles
or other robots up to a distance of about 2.5 c¢m; (ii) 1 ground sensor located
under the front of the robot, used to detect whether the robot is placed over a
target area or not; and (iii) 4 vision sensors, used to detect the presence of red or
blue LEDs (2 sensors for each colour). The vision sensors return a binary value
about the presence or absence of LEDs in two 72° sectors of the image that cover
the front-left and front-right area of the robot. Both red and blue LEDs can be
detected up to a distance of 35 cm (see Fig. 1).

2.2 The controller and the evolutionary algorithm

Each robot is controlled by a feed-forward neural network (see Fig. 1) with 13
sensory neurons (8 infrared, 1 ground, 4 vision sensors), 3 internal leaky inte-
grators neurons and 4 motor neurons (2 wheels, 1 blue LED and 1 red LED).
Connections weights, biases and time constants of the leaky integrators are ge-
netically encoded parameters subject to artificial evolution [13,5]. The free pa-
rameters of the robot’s neural controller are encoded in a binary genotype, using
8 bits for each real number. The connection weights and biases can vary in the
range [—5, 5], while the time constants vary in [0, 1]. Evolution works on a popu-
lation of 100 randomly generated genotypes. After evaluation of the fitness, the
20 best genotypes survive in the next generation (elitism), and reproduce by
generating four copies of their genes with a 3% mutation probability of flipping
each bit. The evolutionary process lasts 500 generations.

In order to evaluate the fitness, a genotype is translated into N identical
neural controllers which are downloaded onto N identical robots (i.e., the group
is homogeneous). Each group of robots is tested for 15 trials, each lasting 6000
time-steps (one time-step corresponds to 100 ms). Regarding the fitness com-
putation, the trial is split into two periods, T,4q4 and Teg: the latter lasts 5400
time-steps and is the actual period during which the fitness is estimated. The
former lasts 600 time-steps, and is the time dedicated to the exploration of the
environment and to the initial coordination of the robots. At the beginning of
each trial the positions and the orientations of the robots are randomly ini-
tialised, while the target areas are positioned systematically choosing a value in
D € Dy = {70,90,110,130,150} cm (see Fig. 1). The performance F' of the
group during a trial is obtained evaluating how often and how quickly each robot
in the group moves from one area to the other. For this purpose, each robot i
cumulates a reward f every time it enters in a target area different from the one
previously visited. This reward is computed according to the energy e; saved in



moving from one target area to the other.

e;(t) if robot enters a new target area

fit) = fit = 1) + {0 otherwise (1)
where f;(t) is the reward cumulated at time ¢, and e;(t) is the energy saved.
Equation (1) states that when a robot enters in a target area different from the
one previously visited, it stores the current energy load e;(t) as reward. At the
same time, the energy level is reset to a quantity proportional to the distance
between the target areas. Otherwise, the robot consumes its energy while moving,
proportionally to its speed:

() = 1+ Eg if robot enters a new target area (2)
G\ ei(t — 1) — 65(t) otherwise

where Eg; is the energy that a robot would consume to move in a straight line
between the two target areas, and 0;(t) is the energy consumed in a single time-
step, proportional to the wheels speed!. With an optimal behaviour (moving
straight between the two areas), a robot would store a quantity e;(t) = 1 each
time it enters a new target area, independently from the distance between the
two. The performance of the robot is computed at the end T of the trial, and is
normalised according to the maximum performance that can be achieved by a
robot behaving optimally:

71' = fi (T)/fma;va fmaz = Vmaz * Teff/Dab (3)

where Dy, = D — d is the minimum distance that must be covered between two
target areas. Finally, the fitness of the group F' in a trial is computed as the
average across the group:

F=> T (4)

The final fitness of the genotype is the average of F' over 15 different trials.

3 Obtained results and behavioural analysis

The evolutionary process has been replicated 10 times—hereafter, evolutionary
runs—starting from randomly generated populations. At the end of each evolu-
tionary run, we selected a single genotype to be analysed thoroughly. To do so,
we evaluated the performance of the best genotype of the last 100 generations,
and we selected the one showing the highest average over 500 trials as the repre-
sentative of each evolutionary run. The results are shown in Fig. 2. A qualitative
analysis of the evolved behaviours reveals that 6 evolutionary runs out of 10
result in a good collective exploration and navigation behaviour (runs number

! This is in [0.0, 0.0025], which means a robot wastes at most 1 unit of energy in 400
time-steps, if moving at maximum speed.
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Fig. 2. Performance of the best evolved individual for each evolutionary run. Each
boxplot corresponds to the performance obtained in 500 trials. Boxes represent the
inter-quartile range of the data, while the horizontal lines inside the boxes mark the
median values. The whiskers extend to the most extreme data points within 1.5 times
the inter-quartile range from the box. Circles mark the outliers. The symbol 17 indicates
the average performance.

3,1,6,4,7and 0). Two runs (number 5 and 9) produced sub-optimal strategies,
and two others (number 8 and 2) resulted in unsatisfactory behaviours both
at the individual and collective level. Given that the successful runs produced
qualitatively similar behaviours, in the following we describe the one of the best
genotype, corresponding to the evolutionary run number 3 (see Fig. 2).2

The sequence displayed in Fig. 3(a) shows how a typical trial unfolds in time3.
Initially, robots move independently and explore the environment. In doing so,
they signal their position and heading to other robots keeping the front blue LED
switched on, while the red LED is used only in certain conditions (see below).
The visual interactions mediated by these signals allow the group to converge
to a coherent motion between the two target areas. Eventually, the robots form
two rows moving from one target to the other in opposite directions (see the
last frame in Fig. 3(a)). We refer to this structured spatio-temporal pattern
formed by the robots as dynamic chain. The term dynamic well illustrates two
interesting features of this structure. Firstly, each robot in the chain is not static,
but moves continuously along it, swinging between the target areas as requested
by the fitness function. Secondly, the chain connecting the two targets adapts
its shape according to the current distance D between areas: it adapts the chain
direction by choosing the shortest path between the two areas, and adapts the
inter-robot distance to fit all robots in the chain (see Fig. 3(b)).

This collective behaviour is the result of simple rules followed by each indi-
vidual robot and encoded in the neural controller. When a robot has no objects

2 In this case the best genotype belongs to the 475" generation.
3 See http://laral.istc.cnr.it/esm /sperati-etal-ANTS2010/ for videos
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Fig. 3. (a) Temporal sequence recorded in a generic successful trial (D = 110 cm),
showing the formation of the dynamic chain. (b) From left to right, each snapshot
displays the final configuration achieved by the swarm, at the end of 5 different standard
trials where the target areas are positioned according to the distance values in Dse:.

in its perceptual field, it moves counterclockwise in large circles, the front blue
LED always switched on. When a target area is in sight, a robot approaches
it in a straight line and makes a u-turn when it reaches the grey circle. When
two robots encounter, they avoid each other by always dodging to the right, ex-
ploiting the blue visual signal emitted by the robots. This constitutes the basic
mechanism for the formation of the dynamic chain: in fact, a robot does not nec-
essarily follow the robot in front moving in the same direction, but rather keeps
on its left the robots coming in the opposite direction. It is clear that a mini-
mal number of robots is necessary to support this behaviour, because a dynamic
chain is stable as long as there are robots moving in opposite directions. In order
to aggregate all robots in the chain formation, the red signal is exploited. In fact,
the red signal mimics the colour of the target area, and in general induces an
approaching behaviour. The red LED is switched on in two conditions. On the
one hand, a robot flashes while moving towards a target area. In this case, the
signal allows nearby robots to react by approaching the target area themselves,
even though they do not directly perceive it. On the other hand, robots signal
while avoiding each other. In this case, the function of the signal appears linked
also to the enhancement of the stability of the dynamic chain. Although the
identification of the exact roles played by the red and blue signals needs further
analysis that we plan to carry on in future research, these observations clearly
indicate that communication plays a crucial role for the formation of the dy-
namic chain and more generally for the ability of the robots to coordinate and
cooperate.

This brief qualitative analysis suggests the following considerations. First of
all, the formation of the chain is the outcome of a self-organising process that



results solely from the robot-robot interactions. We observed that the dynamic
chain forms rather abruptly out of a disordered group motion. We believe that
this may correspond to a phase transition that depends mainly on the density
of robots between the two target areas. In other words, when enough robots are
attracted in this area thanks to the visual communication, the chain forms. A
second important remark concerns the function of the dynamic chain, which is
exploited by the robots to maintain the right heading toward the target areas
when they are not in sight. From this point of view, the group behaviour com-
pensates for the limited sensory range of the robots, which collectively discover
and preserve information concerning the direction of the two areas, thanks to
the exploitation of the communication signals.

To better evaluate the performance of the group, we tested the collective
behaviour systematically varying the distance between the target areas D €
Dget. The obtained results are presented in Fig. 4(a). Here the performance of the
group is compared to the performance of a single individual evolved in a control
experiment.? First of all, we notice that the group always outperforms the single
individual. This confirms that a coordinated behaviour has been evolved, which
goes beyond the capability of the individual robot. Looking at the performance
of the group, it is possible to notice that the behaviour seems adapted mostly
for an intermediate distance, in which it scores the highest average performance.
With larger distances, the performance across different trials is more changing.
This suggests that the group may be able to coordinate in some cases, and in
others is not. We ascribe this variability to the limited duration of the trial,
hypothesising that in some cases robots do not have enough time to coordinate
and form a dynamic chain. To test this hypothesis, we performed an identical
test, but now increasing the duration of the initial coordination period (Thqq =
18600, Ty = 5400 time-steps). The results plotted in Fig. 4(b) confirm that for
all distances the group attains a good score, which is also very stable across
different trials. Moreover, the results indicate that the group behaves better for
large distances. In fact, with short distances, the dynamic chain is overcrowded
and robots interfere with each other, therefore obtaining a lower performance.
In this conditions, a smaller group behaves better (data not shown). Finally we
note how, when D = 150, the performance of the individual continue to be very
low, despite the extended time. This means that a robot alone is not capable to
face all the D values, while the swarm is.

4 Generalisation abilities

In the previous section, we have described the features of the evolved behaviour,
and observed how the system always converges to a dynamic path formation if
enough time is granted for coordination. In this section, we test the ability of the

4 We explicitly evolved a neural controller for a single robot confronted with the same
task, with identical evolutionary conditions. We performed 30 evolutionary runs,
each one lasting 1000 generations, and selected the best genotype with the same
procedure described above.
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Fig. 4. (a) Performance test with varying distance D € Dge¢. Performance is computed
for groups of N = 10 robots, and for a single robot evolved for the same task in a
control experiment (N = 1). (b) The same test performed with a longer initial period
Twda = 18600, during which performance is not computed.

system to generalise to different conditions never met during the evolutionary op-
timisation. In particular, we want to understand whether robots are able to form
a path with larger distances and with larger groups. We test the performance of
the group in 16 new conditions, obtained coupling 4 groups (N € {20, 30,40,50})
with 4 distances (D € {200,250, 300,350} cm). These tests have been performed
in a larger arena (fixed height H = 350 cm, variable width W € [350, 390] cm),
and in longer trials (T,4q = 36600). The quantitative results are shown in Fig. 5.
We can immediately notice that, when the number of robots is sufficiently large,
the swarm is successful also when the distance between the two target areas
is much wider compared to the conditions experienced during the evolutionary
process. With distance D = 200 cm, groups with 20 robots perform best, while
larger groups are less efficient. Groups of 30 robots have a fairly good perfor-
mance, which however presents a large variability. With distance D = 250 cm it
is possible to notice a similar pattern. However, this time N = 30 is the optimal
group size. Finally, for D = 300 cm and D = 350 cm, the size N = 40 performs
best, with a larger variability in the latter case, in which also N = 50 presents
a fairly good performance in many trials.

This analysis confirms our expectations: the larger the distance between the
target areas, the larger the number of robots required to form a stable chain.
In fact, as mentioned above, the dynamic chain is maintained as long as there
are constantly robots moving in opposite directions uniformly distributed along
the path, which implies larger groups for larger distances. The analysis also
confirms that a minimum number of robots is necessary to form a path over a
certain distance. Similarly, large groups suffer overcrowding when the distance
D is too short, as there is no space available to distribute all the robots along
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Fig. 5. Generalisation ability for groups of increasing size N and for increasing distance
D. Each boxplot corresponds to the performance obtained in 500 trials (Teyy = 5400,
Toaa = 36600).

the path. However, the dynamic chain can adapt to a wide range of distances.
For instance, groups of 30 robots present good performance up to D = 300 cm,
and only with larger distances the performance systematically drops.

5 Discussion and conclusions

In this paper we reported a series of experiments in which the behaviour of a
swarm of robots has been evolved for the ability to navigate back and forth
between two target areas which can only be perceived locally. The analysis of
the obtained results indicates that the robots solve the problem by exploring the
environment and by forming a dynamic chain constituted by two rows of robots
moving from one target to the other in opposite directions. The dynamic chain
emerges rather abruptly from the robot-robot interactions mediated by light
signals, and afterwards adapts by converging toward a configuration that corre-
sponds to the shortest path and that is characterised by a rather uniform dis-
tribution of distances between the robots. The analysis of the evolved behaviour
demonstrates how it generalises to situations in which the distance between the
two target areas is much wider compared to the conditions experienced during
the evolutionary process provided that the number of robots forming the swarm
is sufficiently large. Similarly to pheromone trails in ants, dynamic chains allow
the swarm to efficiently navigate between the two target areas. Indeed, in both
cases the stability of the structure is a result of a sustained flux of individuals
that support it, in one case by pheromone laying, in the other by coloured sig-
nals. Another common feature is the ability to identify the shortest path between
two locations. Even though we only performed tests in an obstacle-free arena,
we observed that dynamic chains may initially form in curved paths (especially
with large groups), which slowly straighten until the shortest route is taken. In
future work, we plan to analyse in more detail the evolved behaviour, in order to



better understand the properties of the dynamic chain and its relationship with
similar behaviours observed in Nature.

In future work, we plan to test the evolved behaviour in hardware exploiting the
foot-bot robotic platform developed within the European project Swarmanoid
(grant IST-022888, see http://www.swarmanoid.org). Within this project, we
also aim at testing coordinated behaviours among groups of heterogeneous robots.
In particular, we plan to exploit the eye-bot robotic platform to work as ’smart’
target areas. The eye-bot is in fact an aerial robot with the ability to attach
to the ceiling, from which it can monitor the environment and detect relevant
areas. Foot-bots can perceive an eye-bot only when they are approximately un-
derneath it, thanks to a camera pointing upward. As a consequence, eye-bots
could be exploited by the foot-bots as target areas, and dynamic chains can be
formed between them, creating for instance a delivery line from a target to a goal
location, which is known by the eye-bots thanks to their privileged viewpoint.
Moreover, eye-bots can move in the environment and exploit the robustness of
the dynamic chain to purposely modify its length or its shape. Finally, we will
investigate how to form more complex dynamic chains that can trace the shortest
path between more than two eye-bots or target areas.
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