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Abstract A well known problem in the design of the control system for a swarm of ro-
bots concerns the definition of suitable individual rules that result in the desired coordinated
behaviour. A possible solution to this problem is given by the automatic synthesis of the
individual controllers through evolutionary or learning processes. These processes offer the
possibility to freely search the space of the possible solutions for a given task, under the
guidance of a user-defined utility function. Nonetheless, there exist no general principles
to follow in the definition of such a utility function in order to reward coordinated group
behaviours. As a consequence, task dependent functions must be devised each time a new
coordination problem is under study. In this paper, we propose the use of measures devel-
oped in Information Theory as task-independent, implicit utility functions. We present two
experiments in which three robots are trained to produce generic coordinated behaviours.
Each robot is provided with rich sensory and motor apparatus, which can be exploited to
explore the environment and to communicate with other robots. We show how coordinated
behaviours can be synthesised through a simple evolutionary process. The only criteria used
to evaluate the performance of the robotic group is the estimate of mutual information be-
tween the motor states of the robots.
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1 Introduction

The design of the control system for a swarm of robots is not a trivial enterprise. Above
all, it is difficult to define the individual rules that produce a desired swarm behaviour with-
out an a priori knowledge of the system features. For this reason, evolutionary or learning
processes have been widely used to automatically synthesise group behaviours (see, for
instance, Matarić 1997; Quinn et al. 2003; Baldassarre et al. 2007). In this paper, we inves-
tigate the use of information-theoretic concepts such as entropy and mutual information as
utility functions for mobile robots, which adapt on the basis of an evolutionary or learning
process. We believe that the use of implicit and general purpose utility functions—fitness
functions or reward/error measures—can allow evolution or learning to explore their search
space more freely, without being constrained by an explicit description of the desired solu-
tion. In this way, it is possible to discover behavioural and cognitive skills that play useful
functionalities, and that might be hard to identify beforehand by the experimenter without
an a priori knowledge of the system under study. Such task-independent utility functions
can be conceived as universal intrinsic drives toward the development of useful behaviours
in adaptive embodied agents. A second relevant aspect of this approach, which will be in-
vestigated in future work, concerns the combination of implicit and task-independent utility
functions with explicit and task-dependent ones, in order to favour the development of be-
havioural and cognitive skills that serve specific requested functionalities, but that would be
hard to develop through explicit descriptions only.

Relevant work in this direction has been carried out recently. Sporns and Lungarella
(2006) demonstrated how the maximisation of the information structure of the sensory states
experienced by embodied and situated agents might lead to the development of useful behav-
ioural skills. The agent is a simulated arm provided with visual and tactile sensors, placed
in an environment including an object that moves in a random direction at constant speed.
The object is characterised by a uniform colour which can be distinguished from the ran-
domly coloured pixels of the background. By evolving agents on the basis of the information
structure of their experienced sensory states, the authors observed the development of use-
ful behavioural skills consisting in the ability to foveate and to touch the moving object.
Capdepuy et al. (2007) demonstrated how a wide range of coordinated collective behaviours
can be developed by having a population of creatures situated in the same environment
which adapt by maximising their empowerment—an individual-based utility function that
measures the information transfer between the actions produced by the agent and the sensory
states later experienced by the agent itself. The term “empowerment” refers to the fact that
this measure encodes the perceived amount of influence or control that the agent has over
the world. Prokopenko et al. (2006a) demonstrated how the maximisation of a measure of
the spatio–temporal coordination of the body parts of a simulated snake-like robot can lead
to useful coordinated behaviour. In particular, the authors showed how a utility function that
minimises the irregularity over both space and time of the state of the actuators connecting
the body parts of the robot can lead to the evolution of effective locomotion behaviours.

In this paper, we exploit information-theoretic measures to evolve collective behaviours
for a homogeneous group of robots. In particular, we demonstrate how the use of a utility
function that maximises the mutual information in state and time between the motor states of
wheeled robots leads to the evolution of a variety of effective coordinated behaviours. In the
present study, three robots driven by identical neural controllers prove capable of displaying
behaviours that are both structured and coordinated. We define a “structured” behaviour as
a temporal sequence of several elementary behaviours, where the latter are sequences of
atomic actions that produce a well defined outcome (e.g., “move-straight”, “move-to-light”,
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“avoid-obstacle”, etc.). For instance, an oscillatory behaviour in which a single robot moves
back and forth from a light bulb is structured as it can be described as a periodic sequence of
“move-to-light” and “move-away-from-light” behaviours. In contrast, sequences of random
atomic actions would not be considered structured.

We present two sets of experiments which differ by the environmental cues available to
the robots. In the first experiment, referred to as El , robots evolve within an arena presenting
a clearly distinguishable cue, that is, a light bulb perceivable from every location. In the
second experiment, referred to as Ed , there is no light bulb that provides environmental
cues to be exploited, and the robots have to autonomously create the conditions required to
perform structured and coordinated behaviours. We show how the proposed measure leads
to the evolution of a rich—nontrivial—repertoire of coordinated behaviours. Moreover, the
paper assesses the effectiveness of the proposed methodology through the use of realistic
simulations and through the test of the solutions evolved in simulation on the physical robots.

The rest of the paper is organised as follows. In the next section, we briefly review the
relevant aspects of information theory. In Sects. 3 and 4, we describe the experimental setup
and the results obtained. In Sect. 5, we perform a scalability analysis to test the performance
of the evolved controllers with large groups of robots. Finally, in Sect. 6, we discuss the
main contributions of the paper and we draw our conclusions.

2 Short introduction to information theory

In this section, we briefly discuss the information theory concepts and measures first in-
troduced by Shannon (1948), used in the definition of the task independent utility function
described in Sect. 3.3. Regarding notation, we follow Feldman’s style: we use capital let-
ters to indicate random variables, and lowercase to indicate a particular value of a variable
(Feldman 2002). For example, let X be a discrete random variable. The variable X may
take on the values x ∈ X . Here, X is the finite set of M possible values (or states) for X,
referred to as the alphabet of X. The probability that X takes on the particular value x is
written p(X = x), or just p(x) (first order probability density function). We may also form
joint and conditional probabilities. Let Y be another random variable with Y = y ∈ Y . The
probability that X = x and Y = y is written p(X = x,Y = y), or simply p(xy) (second
order probability density function), and is referred to as a joint probability. The conditional
probability that X = x given Y = y is written p(X = x|Y = y), or simply p(x|y). Now, we
can introduce the Shannon entropy equation which is formally defined as:

H [X] = −
∑

x∈X

p(x) · log2 p(x). (1)

The entropy H [X] is equal to zero if the variable X always takes on the same value. The
maximum value is equal to log2 M , and it is obtained when X takes on all M possible values
of the alphabet X with the same probability (p = 1

M
). There are many interpretations of

the meaning of Shannon entropy. In our case, we consider entropy as “a precise measure
of the amount of freedom of choice in an object; an object with many possible states has
high entropy” (see Prokopenko and Wang 2003). The same formula and interpretation is
applicable to a joint distribution:

H [XY ] = −
∑

x∈X

∑

y∈Y

p(xy) · log2 p(xy). (2)

Note that, by definition, H [XY ] ≤ H [X] + H [Y ]. The equality is obtained if and only if
X and Y are statistically independent. Given a conditional distribution we can define the
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conditional entropy:

H [X|Y ] = −
∑

x∈X

∑

y∈Y

p(xy) · log2 p(x|y). (3)

The conditional entropy quantifies the remaining entropy about X, given that the value of
Y is known. Note that H [X|Y ] = 0 if and only if the value of X is completely determined
by the value of Y . Conversely, H [X|Y ] = H [X] if and only if X and Y are statistically
independent. It is quite useful to see that the equation of joint entropy can be reformulated
in terms of marginal entropy and conditional entropy:

H [XY ] = H [X] + H [Y |X] = H [Y ] + H [X|Y ]. (4)

Finally, we present the Mutual Information (MI) which is formally defined as:

MI[X;Y ] = −
∑

x∈X

∑

y∈Y

p(xy) · log2
p(x) · p(y)

p(xy)
. (5)

The properties of MI are more evident if we re-write the above formula in terms of the mar-
ginal entropy and the joint entropy and in terms of the marginal entropy and the conditional
entropy:

MI[X;Y ] = H [X] + H [Y ] − H [XY ], (6)

MI[X;Y ] = H [X] − H [X|Y ] = H [Y ] − H [Y |X]. (7)

Looking at (5), it is possible to notice that MI[X;Y ] = 0 if the two variables are statistically
independent. On the other hand, (6) shows that MI[X;Y ] = 0 if the two variables have zero
entropy. Finally, note that MI[X;X] = H [X], and MI[X;Y ] = MI[Y ;X].

The interpretation of MI is quite clear looking at (7). Feldman describes MI as “the
reduction in uncertainty of one variable due to knowledge of another. If knowledge of Y

reduces our uncertainty of X, then we say that Y carries information about X” (Feldman
2002). In other words, if X and Y are independent variables, the mutual information that
one variable brings about the other is null. On the other extreme, mutual information is
maximised if the knowledge of one variable is sufficient to completely describe the other
variable. In practise, MI can be used as a powerful index of correlation: the greater the value
of MI, the more correlated the two variables. The great advantage of MI is that it takes into
account both linear and nonlinear dependencies (Lungarella and Pfeifer 2001).

The above measures—and other derivations—have been exploited successfully in many
different fields. In ethology, information entropy has been used to describe the interplay be-
tween pheromone molecules and ants’ movements. Observing foraging behaviour in ants,
Van Dyke Parunak and Brueckner (2001) showed that an increase in entropy at the micro-
level of the chemical particles is compatible with a reduction of disorder at the macro-level
of the ants’ movements. Brenner et al. (2000) used information entropy to describe the be-
haviour of the visual system of the fly. The authors showed how the fly’s response to the
environmental features is dynamically adapted in order to maximise the information inflow.
In neurosciences, the dynamics observable in the human brain have been studied under the
light of information theory (Tononi et al. 1994, 1996, 1998; Sporns et al. 2000). A new
measure called neural complexity (CN ) captures some aspects of the interplay between the
functional segregation of different cortical areas and their global integration during percep-
tion and behaviour. CN is shown to be high when functional segregation coexists with global
integration, and to be low when the components of a system are either completely indepen-
dent (segregated) or completely dependent (integrated). In robotics, Olsson et al. (2005)
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proved that the perceptions of a SONY AIBO robot can be treated in an efficient and com-
putationally economic way if sensors can adapt to the statistical properties of the incoming
signals. In another interesting work, entropy and mutual information have been applied to
the sensory channels of a two wheeled simulated robot (Tarapore et al. 2004, 2006). These
measures were used to classify different behaviours, such as exploring the environment,
searching for red objects and tracking them. The authors argued that information theory can
provide useful methods to discover the “fingerprints” of particular agent–environment in-
teractions. Similarly, Lungarella and Pfeifer (2001) used entropy and mutual information to
analyse the input data obtained by a robotic arm holding a colour camera. The authors com-
pared coordinated movements (i.e., foveation on a red object), with uncoordinated ones (i.e.,
random movements), detecting clear informational structures in the first case. Comparable
results were obtained by Lungarella and Sporns (2005) and Lungarella et al. (2005), using
a robotic setup very similar to the previous. The authors argued that coordinated sensory–
motor activity induces information structures in the sensory experience.

Conversely, it has been argued that sensory–motor coordination can be achieved by
rewarding information structure in the sensory or motor experience of autonomous ro-
bots (Sporns and Lungarella 2006; Capdepuy et al. 2007; Klyubin et al. 2005a, 2005b;
Prokopenko et al. 2006a). These works—as well as the work presented in this paper—belong
to a novel methodology in evolutionary robotics called information-driven evolution, in
which generic information theoretic criteria are exploited as utility functions. “The solutions
obtained by information-driven evolution can be judged by their degree of approximation to
the direct evolution results. A good approximation will indicate that the chosen criteria cap-
ture the information-theoretic core of selection pressures, leading to task-less adaptation”
(Prokopenko et al. 2006b). In this work, we focus on applying mutual information as the
generic utility function to obtain task-less adaptation, as described in the following section.

3 Experimental setup

As mentioned in the previous section, MI[X;Y ] can be seen as a powerful measure to grasp
the correlation between two stochastic variables X and Y . Moreover, maximising MI also
corresponds to maximising the entropy of the single variables H [X] and H [Y ],1 which
is related to an higher probability of observing X or Y in multiple states. In this paper,
we study whether MI can be used to evolve coordinated behaviours in a group of robots.
However, the application of such a measure as utility function for an evolutionary robotics
experiment is not straightforward. Given the experimental setup, it is necessary to define
which are the stochastic variables under observation, discretise them in a suitable way and
compute the desired utility functions. We chose to maximise the mutual information of the
motor states observed in a group of autonomous robots (see Sect. 3.3). In particular, we
focus on the wheels’ speed, which characterises the robot movements in the environment.
In this way, we aim at evaluating the quality of the individual and group behaviour, without
any reference to the sensory pattern perceived by the robots.

The experimental setup involves three wheeled robots provided with a neural controller
and different types of actuators and sensors (see Sect. 3.1). Robots are placed in a 1 m
side square arena surrounded by walls. In the experiment El , a light bulb is placed in the
centre of the arena. The intensity of the light decreases quadratically with the distance from
the light bulb, but it is anyway perceivable by the robots from every location in the arena.

1This is true if the joint entropy is kept constant, see (6).
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Therefore, the light bulb provides a clearly distinguishable environmental cue to be exploited
by the robots for coordination. In the experiment Ed , such environmental cue is not present,
making the coordination between the robots more difficult to achieve.

We performed 20 evolutionary runs per experiment, in order to establish the viability of
the approach, varying the initial population of genotypes. Each evolutionary run is iterated
for 200 generations, in which the population is evaluated and genotypes are selected for
reproduction on the basis of an estimate of their fitness (see Sect. 3.2). This estimate is ob-
tained by testing each genotype 10 times—i.e., we perform 10 independent trials randomly
varying the initial conditions (see Sect. 3.3). The best evolved genotypes resulting from
each evolutionary run is then selected for a qualitative and quantitative analysis, presented
in Sect. 4.

3.1 The robot and the neural controller

The experiments presented in this paper are performed using the e-puck robots (see Fig. 1
left), which are wheeled robots with a cylindrical body having a diameter of 70 mm (Mon-
dada and Bonani 2007; Cianci et al. 2007). A rich subset of the sensory–motor features
of the e-puck has been exploited, as detailed below. In fact, by using an implicit and task-
independent fitness function, we do not define a particular goal to be pursued by the robots.
As a consequence, we do not know in advance the sensory–motor features that can be ex-
ploited to maximise the fitness function. We therefore decided to provide the robots with a
rich set of sensors and actuators in order to let the evolutionary process free to explore a
wide set of possible solutions.

Each robot is provided with various sensory systems that allow it to perceive the environ-
ment, including the other robots. Among these, we make use of infrared proximity sensors,
ambient light sensors, and a VGA camera pointing in the direction of forward motion. More-
over, the robots can communicate with their neighbours in two different ways. They can light
up the 8 red LEDs distributed around their body, in order to be detected by cameras of the
other robots. Additionally, robots can exploit their wireless Bluetooth interface to send and
receive short messages.

The robots are controlled by artificial neural networks, whose parameters are set by an
evolutionary algorithm. A single genotype is used to create a group of robots with an identi-
cal control structure—a homogeneous group. Each robot is controlled by a fully connected
two layer neural network, characterised by an input layer with leaky integrator neurons and

Fig. 1 Left: The e-puck robot developed at the Swiss Federal Institute of Technology in Lausanne (EPFL)
(Mondada and Bonani 2007). Right: A close up view of the environment with the light bulb in the centre and
three robots
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Fig. 2 The architecture of the neural controller. The grey neurons and the corresponding connections are
used in the experiment El only, while the other neurons are common to both setups

by an output layer of motor neurons (see Fig. 2). The activation of the output neurons is
computed as the weighted sum of all input units and the bias, filtered through a sigmoid
function:

Oj(t) = σ

(∑

i

wij Ii(t) + βj

)
, σ (z) = 1

1 + e−z
, (8)

where Ii(t) corresponds to the activation of the ith sensory neuron at time t , wij is the weight
of the synaptic connection between the sensory neuron i and the motor neuron j , and βj is a
bias term. Sensory neurons are leaky integrators, that is, they hold a certain amount of their
activation from the previous time step, and the effect of the previous state on their current
state is determined by their time constant:

Ii(t) = τi · Ii(t − 1) + (1 − τi) · Ii (t), (9)

where τi is the time constant of the ith neuron, and I(t) is the sensory input at time t .
The activations of the output neurons are real valued numbers in the range [0.0, 1.0], and

are used to control the actuators of the robot (see Fig. 2). Two motor neurons (m1 and m2)
encode the desired speed of the two motors which control the two corresponding wheels.
The activation of each neuron is linearly scaled in the range [−2π,2π] rad/sec, and used
to set the desired angular speed of the corresponding motor. One motor neuron (L) controls
the red LEDs: all eight LEDs are switched on or off depending on whether the activation of
the motor neuron is above or below an arbitrary threshold of 0.9. Finally, one motor neuron
(SO) encodes the value of the communication signal produced by the robot at each cycle,
which varies in the range [0.0,1.0]. This signal is transmitted to the other robots through the
wireless Bluetooth interface.

Concerning the sensory inputs, they are set by the robot sensors after normalising their
value onto the range [0.0,1.0]. Eight sensory inputs are dedicated to the infrared proximity
sensors (IRi , i = 1, . . . ,8), which can detect an obstacle up to a distance of approximately
25 mm (see Fig. 2). Three sensory inputs (Vi, i = 1, . . . ,3) encode the presence of nearby
robots—provided that they have their red LEDs switched on—as detected by the camera:
the image that is grabbed at each cycle is pre-processed, in order to extract the percentage of
pixels that have a predominant red colour within the following three vertical visual sectors:
[−18◦,−6◦], [−6◦,+6◦], and [+6◦,+18◦]. The two remaining sensory inputs are dedicated
to the communication signal: one input (IS) encodes the average signal produced by all the
robots placed in the arena, the other input (OS) encodes the signal produced by the robot
itself during the previous cycle. Additionally, in the experimental setup that includes the
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light bulb, the robots are provided with eight further sensory inputs, which are dedicated to
the ambient light sensors (ALi , i = 1, . . . ,8), shown in grey in Fig. 2.

In the experiments performed in simulation, the state of the infrared and ambient light
sensors has been simulated through a sampling technique (Miglino et al. 1995). The visual
sensors have been simulated through a ray tracing technique, by using 36 rays uniformly
distributed over the camera range. All sensors have been subjected to noise implemented as
a random value with a uniform distribution in the range [−0.05,0.05], added to the state
of each simulated sensor. The use of simulated noise should favour the portability of the
controllers evolved in simulation to the physical robots (see Jakobi 1997, for a detailed
discussion about this topic).

3.2 The evolutionary process

The free parameters of the robot’s neural controller are adapted through an evolutionary
process (Nolfi and Floreano 2000). The initial population consists of 100 randomly gen-
erated binary genotypes, that encode the connection weights, the bias terms and the time
constants of 100 corresponding neural controllers. Each parameter is encoded by 8 bits, and
its value is linearly scaled from the range [0,255] to the range [−5.0,5.0] in the case of
connection weights and bias terms, and in the range [0.0,0.95] in the case of time constants.
The 20 best genotypes of each generation were allowed to reproduce by generating five
copies each, with 4% of their bits replaced with a new randomly selected value, excluding
one copy (elitism). The evolutionary process lasted 200 generations.

Each genotype is translated into 3 identical neural controllers which are downloaded onto
three identical robots (i.e., the robots are homogeneous). Each team of 3 robots was tested for
10 trials, lasting 200 seconds (i.e., 2000 simulation cycles of 100 ms each). The performance
of the genotype is the average fitness, as computed by (12), over 10 trials. At the beginning
of each trial, the three robots are placed in the arena with a random position and orientation.
In case of collision the team is repositioned randomly again. The evolutionary process has
been conducted in simulation.2 The best evolved neural controllers have been tested with
physical robots.

3.3 The fitness function

Evolving individuals are selected on the basis of a fitness function which measures the Mu-
tual Information MI between the motor states Xi of all possible robot pairs. The maximi-
sation of MI should drive evolution towards the development of coordinated behaviours. In
fact, high values of MI correspond to motor states that are positively correlated: the knowl-
edge of motor state Xi gives information about motor state Xj and vice versa. In other
words, Xi and Xj result from processes that we can describe as “coordinated”. Moreover,
since the maximisation of MI also requires the maximisation of the entropy of the motor
state Xi of each robot, this fitness function rewards evolving robots for the ability to produce
structured behaviours. In fact, entropy is maximised not only by very random behaviours,
but also by very structured behaviours that systematically vary through time. In particu-
lar, periodic sequences of equally frequent elementary behaviours such as “move-forward”,
“move-backward”, “turn-left”, and “turn-right” allow the robot to uniformly cover many
possible motor states, therefore maximising entropy.

2Using a similar setup, a single evolutionary run—i.e., 200 generations, 100 individuals, 10 trials per indi-
vidual, 200 seconds per trial—performed with physical robots would last longer than one year.
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For the purpose of computing the fitness function as the MI between the motor states
of a robot pair, we need to define a discrete variable X that accounts for the current motor
state—the wheels’ speed. To avoid that motor state variations are caused by the random
noise injected in the simulation, we filter the motor state through a slow moving average. In
this way, for robots not having internal dynamics, systematic variations of Xi can solely be
produced by exploiting the dynamics of the robot/environment interaction (i.e., by exploiting
sensory–motor coordination). The activation values mj, j = 1,2, of the two motor neurons
controlling the wheels has been averaged through time into the variables Mj :

Mj(t) = γ · Mj(t − 1) + (1 − γ ) · mj(t), j = 1,2, (10)

where mj(t) ∈ [0.0,1.0] indicates the current activation of the motor neuron j and γ = 0.9
is a fixed time constant that represents the rate at which Mj(t) ∈ [0.0,1.0] changes over
time. This moving average also channels the evolutionary process towards the synthesis of
behaviours that extend for sensible time durations.3 The overall motor state X of a robot is
a discrete variable computed according to the following equation:

X = �M1 · 5� + �M2 · 5� · 5, (11)

where �Mj · 5� means that the value Mj has been discretised into the integer range [0,4],
encoding all possible activation values of the motor neuron into five discrete states.4 As a
consequence, X takes on integer values in the range [0,24].

In order to compute the MI of a robot pair, the value Xi of each robot i = 1,2,3 is
recorded in every cycle, obtaining statistics about the states encountered during a trial. On
the basis of these statistics, it is possible to estimate the probability distribution p(Xi = x)

and the joint distribution P (Xi = x,Xj = y) needed to compute MI[Xi;Xj ], according to
Equation (5). Having estimated the probability distribution, the fitness function F of the
group of robots in a trial is calculated on the basis of the following equation:

F =
(

N

2

)−1 N∑

i=1

N∑

j=i+1

MI[Xi;Xj ] · 20 − c

20
, (12)

where N is the number of robots, and c is the number of times in which one of the robots
collided against a wall or against another robot, truncated to 20. Notice that the sum is
extended to all possible robot pairs, and it is normalised by the total number of different pairs
with N robots. The second term of the fitness function has been introduced in order to reward
robots for the ability to avoid collisions. All robots are randomly repositioned whenever
a collision is detected: in this way, we bypass the problem of accurately simulating the
physical interactions during a collision, offering the robots further possibilities to coordinate.
Moreover, a maximum of 20 collisions per trial is allowed before the trial is stopped. These
choices channel the evolution of good collision avoidance behaviours.

3Preliminary experiments conducted without the moving average produced behaviours that were coordinated,
but neither periodic nor structured (result not shown). In these experiments, we observed that the motor state
of each robot varied in a quasi-random way (e.g., alternating at each time-step very different actions such as
move-forward, move-backward, turn-right, turn-left); therefore, maximising the individual entropy without
actually being structured or periodic. Such variations were produced by achieving and maintaining a given
relative position with respect to an obstacle or to the other robots, so that each movement resulted in a large
variation of the sensory pattern.
4The activation value equal to Mj = 1.0 is considered as state 4.
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The maximum value of F is obtained when no collisions are detected and all robot pairs
have maximum MI. Since X can assume 25 different states, the fitness takes values in the
range [0.0, log2 25]. It is worth noting, however, that the maximum value cannot be achieved
in practise. The main reason for this is that the individual entropy cannot be maximised
because robots are embodied and their dynamical interaction with the environment—as it is
defined by the neural controller—constrains the number of motor states visited during the
robot’s lifetime, and their relative frequency. Moreover, the motor state X is the result of
a moving average with a fixed time constant, which influences X’s variability. Finally, the
computation of the MI includes the initial transitory phase during which the robots try to
achieve a coordinated behaviour.

4 Results

In this section, we describe the results obtained in the two experiments El and Ed . As de-
tailed in the following sections, in both experiments the evolved robots display behaviours
that are structured (i.e., they consist of a sequence of atomic movements with varying time
durations), periodic (i.e., the sequence of atomic movements is repeated through time), and
coordinated (i.e., the different robots tend to produce the same structured behaviour in a
synchronised manner). From a qualitative point of view, the evolved behaviours vary con-
siderably between the two experiments, and also across the different evolutionary runs of
the same experiment.

4.1 Experiment El

In the experiment El , the robots are situated in a 1 m side square arena presenting a light
bulb, which can be perceived by means of the robot’s ambient light sensors. As mentioned
above, we performed 20 evolutionary runs, each time starting with a different randomly
generated population. After the evolutionary process, we selected the best individual of each
run for post-evaluation. In this case, the fitness of each individual was further evaluated
for 500 trials, using (12). The results obtained are summarised in Table 1, in which we
show mean and standard deviation over the 500 trials of the fitness F , of the mean mutual
information M̂I over all possible robot pairs, and of the mean entropy Ĥ computed over
all robots. The results of the post-evaluation show that the average fitness varies between
1.70 and 3.24, obtained, respectively, in runs 1 and 16. Given that F has been explicitly
constructed as a task independent and implicit utility function, the absolute value of F is
not very informative about the quality of the evolved behaviour. Recall that the absolute
value of F is mainly given by the M̂I. The latter is constrained by the robots’ embodiment
which limits the number of possible motor states actually visited during the robot’s lifetime.
A qualitative analysis revealed that 18 out of 20 evolutionary runs resulted in controllers
that produce structured and coordinated behaviours (see the runs indicated by a black dot
in Table 1). This is a first result proving that the proposed methodology is viable: mutual
information can be exploited as a generic utility function to obtain task-less adaptation in a
group of robots.

4.1.1 Behavioural analysis

The qualitative inspection of the results obtained indicates that the robots always display
structured and coordinated behaviours. Generally, the environmental cue offered by the
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Table 1 Experiment El : fitness F , mean mutual information M̂I and mean entropy Ĥ computed by testing
in simulation the best evolved controller of each evolutionary run for 500 trials of 2000 cycles. Mean value
and standard deviation are shown. The symbol • indicates a run in which the best evolved individuals clearly
show behaviours that an external observer can judge as structured and coordinated

Run F M̂I Ĥ Run F M̂I Ĥ

1 1.70 ± 0.27 1.72 ± 0.28 2.55 ± 0.39 11 • 2.73 ± 0.17 2.75 ± 0.13 3.51 ± 0.09

2 • 2.81 ± 0.14 2.84 ± 0.11 3.55 ± 0.05 12 • 2.27 ± 0.15 2.29 ± 0.13 3.52 ± 0.19

3 • 1.91 ± 0.20 1.93 ± 0.17 2.97 ± 0.08 13 • 2.38 ± 0.22 2.39 ± 0.21 3.19 ± 0.25

4 • 2.99 ± 0.21 3.02 ± 0.18 3.96 ± 0.04 14 • 2.72 ± 0.13 2.75 ± 0.09 3.55 ± 0.06

5 • 2.97 ± 0.13 2.99 ± 0.11 3.84 ± 0.08 15 • 2.47 ± 0.18 2.51 ± 0.12 3.23 ± 0.04

6 • 2.50 ± 0.07 2.50 ± 0.07 3.24 ± 0.13 16 • 3.24 ± 0.14 3.25 ± 0.12 4.01 ± 0.06

7 • 2.41 ± 0.14 2.42 ± 0.12 3.26 ± 0.15 17 • 2.49 ± 0.16 2.50 ± 0.13 3.55 ± 0.02

8 • 2.19 ± 0.19 2.24 ± 0.16 3.43 ± 0.08 18 1.72 ± 0.17 1.75 ± 0.16 3.05 ± 0.21

9 • 2.40 ± 0.18 2.43 ± 0.14 3.32 ± 0.05 19 • 2.99 ± 0.17 3.01 ± 0.14 3.96 ± 0.04

10 • 2.17 ± 0.20 2.18 ± 0.19 3.07 ± 0.13 20 • 3.12 ± 0.17 3.14 ± 0.14 4.08 ± 0.06

Fig. 3 Analysis of the behaviour produced by the best evolved controller in run 16 of experiment El . Left:
trajectories of the robots. Right: activation of the motor neurons of each robot, plotted from cycle 950 to cycle
1150 to highlight the periodic motion of the robots. The solid and dotted lines indicate, respectively, the left
and right motor neurons

light bulb is exploited by the robots to achieve the same relative position and to display
a periodic, structured behaviour. Moreover, robots perform a coordinated behaviour through
the synchronisation of their movements. Synchronisation is generally achieved through the
exploitation of the communication signal only. Infrared sensors are generally exploited to
avoid collisions with walls and with other robots, while visual information is often ignored.

A particularly interesting example of structured and coordinated behaviour is produced
by the controller evolved in run 16 characterised by the highest mean performance (see Ta-
ble 1). In this case, robots circle anticlockwise around the light bulb maintaining a distance
of about 20 cm (see the trajectories of the robots shown in Fig. 3 and VideoEl-Run16 in
the online supplementary material). While circling around the light bulb, robots display a
structured behaviour composed of four atomic movements: (i) forward motion on the circle,
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(ii) clockwise turn on the spot, (iii) backward motion on the circle, and (iv) anticlockwise
turn on the spot. These atomic movements can be clearly identified looking at the plots in
Fig. 3 right, in which we show the activation of the motor neurons that control the two
wheels. Recall that maximum forward rotation corresponds to 1, while maximum backward
rotation corresponds to 0. Starting at cycle 950, both wheels present forward rotation, result-
ing in forward movement on the circle. Afterwards, the activation of the right motor neuron
sharply decreases to 0, leading to a clockwise rotation on the spot. Then, also the left mo-
tor activations drops to 0, resulting in backward motion. Finally, the right motor activation
increases to 1, producing an anticlockwise rotation on the spot. After this, the robot starts
again with forward motion.5

The above description accounts for the structure of the evolved behaviour. The coordi-
nation between the robots can be appreciated by observing how the motor activations of
the three robots coincide in time (see Fig. 3 right). In short, robots are synchronised as
they perform the same movements at the same time. The mechanism that the robots ex-
ploit to achieve and maintain synchronisation is based on communication, and on the fact
that robots are homogeneous. An individual robot mainly signals during forward motion,
and stops signalling as soon as the clockwise movement starts. All robots perform the same
individual movements, which synchronise on the basis of the mutual interactions through
communication. If an external signal is perceived, the robot keeps moving forward until sig-
nalling stops. As a consequence, the clockwise movement cannot start until all robots are
performing forward motion. When this happens, synchronisation is achieved. This simple
mechanism—already observed by Trianni and Nolfi (2007)—is based on a simple reaction
to the perception of a signal, that allows a robot to achieve and maintain a certain sensory–
motor condition—referred to as reset configuration by Trianni and Nolfi (2007)—waiting
for the other robots. Synchronised movements start when all robots achieve the reset config-
uration.

Having described qualitatively the evolved behaviour, the questions remain: how did this
behaviour evolve? In what way is MI maximised? To answer these questions, it is necessary
to observe the motor states Xi and to analyse their statistics. Figure 4 shows how the motor
states vary through time. First of all, it is possible to notice how the initial coordination phase
is followed by a phase in which the group behaviour is perfectly synchronised. Moreover,
it is possible to observe how, during the coordinated phase, the motor states takes on many
different values. In other words, the motor states of the robots vary considerably through

Fig. 4 The motor states of the three robots—computed using (11)—are plotted against the number of cycles.
Notice the initial coordination phase, followed by synchronised movements

5See also http://laral.istc.cnr.it/esm/sperati-etal-si2008.html for videos and other supplementary material.

http://laral.istc.cnr.it/esm/sperati-etal-si2008.html
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Fig. 5 Left: probability distribution for the motor states Xi of each robot i = 1,2,3. Right: probability
distribution of the joint state 〈X1,X2〉

time, which corresponds to a high individual entropy. Besides, once robots are synchronised,
the motor states are highly correlated. This means that the joint entropy is minimised and
the mutual information maximised.

Similar conclusions can be drawn looking at Fig. 5. In the left part, the histograms rep-
resent the probability p(Xi = x), x ∈ [0,24] estimated on a single trial. It is possible to
notice how Xi takes on many different values with relatively high probability. As a conse-
quence, the individual entropy H [Xi] is rather high (see the individual values shown above
the plot). Similarly, in the right part of Fig. 5, the 3D histogram represents the probability
p(X1 = x1,X2 = x2) estimated on the same trial.6 Here, it is worth noting that the joint
distribution takes values mainly on the diagonal X1 = X2, meaning that the probability of
having X1 	= X2 is rather low. As a consequence, we observe a small value for the joint
entropy H [X1X2], and a high value for the mutual information MI [X1;X2].

Owing to the above analysis, it is possible to claim that (i) structured behaviours max-
imise the individual entropy, because they are characterised by motor states that have sensi-
ble time duration and vary systematically across the range of possible values; (ii) coordinated
behaviours maximise the mutual information, because they ensure that a certain motor state
of one robot is correlated with the motor state of other robots; (iii) the homogeneity of the
robots results in synchronisation behaviours that ensure the one-to-one correspondence of
the motor states between robots.

4.1.2 Porting to reality

By testing with physical robots all controllers that proved successful in simulation, we ob-
served qualitatively similar behaviours with respect to simulation in the majority of the
evolutionary runs (12 out of 18 runs).7 In all other cases, we observed a fairly good corre-
spondence with simulation for individual behaviours, but not for coordination among robots.
In fact, coordination was difficult to achieve and to maintain throughout a whole trial.

6The histograms for the other pairs 〈X1,X3〉 and 〈X2,X3〉 are extremely similar and have been omitted for
space reasons.
7See VideoEl-Run16 in the online supplementary material.
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Table 2 Experiment El : mean
mutual information (M̂I) and
mean entropy (Ĥ ) computed by
testing the evolved controllers on
physical robots for 5 trials of
2000 cycles each. Here we show
only the evolutionary runs that
successfully transfer to reality
from a qualitative standpoint.
The column labelled ‘ratio’
indicates the ratio between the
performance observed in
hardware with respect to the
performance observed in
simulation

Run M̂I Ĥ Ratio

2 2.29 ± 0.07 3.55 ± 0.03 0.81

3 1.34 ± 0.24 3.23 ± 0.16 0.70

5 2.62 ± 0.17 3.87 ± 0.05 0.88

6 2.24 ± 0.04 3.14 ± 0.09 0.90

9 2.22 ± 0.12 3.44 ± 0.05 0.92

11 1.93 ± 0.05 3.31 ± 0.07 0.71

12 1.83 ± 0.12 3.65 ± 0.22 0.81

13 1.78 ± 0.51 2.89 ± 0.28 0.75

16 2.82 ± 0.05 3.96 ± 0.01 0.87

17 1.89 ± 0.13 3.45 ± 0.06 0.76

19 2.42 ± 0.17 3.54 ± 0.10 0.81

20 2.55 ± 0.12 4.17 ± 0.05 0.82

Fig. 6 Mean mutual information (M̂I) and entropy (Ĥ ) computed by testing the best evolved controller of
run 9 of experiment El in simulation and in reality for 20 trials of 2000 cycles. During the tests in hardware,
the robots were situated in the same randomly generated positions and orientations that were used for the
tests in simulation

In order to quantitatively determine the correspondence between tests with simulated and
physical robots, we tested the evolved controllers by placing three real robots in locations
randomly chosen from a set of 32 possible initial positions and 8 possible rotations. We
performed 5 trials for each evolutionary run, and we measured the mean mutual informa-
tion computed among all possible robot pairs. The results obtained are shown in Table 2,
along with the ratio with the mean mutual information resulting from simulation. It is worth
noting that the ratio between the mutual information observed in simulation and in the real
environment is generally quite high, indicating that the behaviours tested in reality fairly
correspond to those observed in simulation.

After this preliminary test performed on all evolutionary runs, we analysed in detail the
best individual of run 9 (i.e., the individual with the highest ratio between the performance
observed in simulation and in reality). We performed 20 further evaluations keeping exactly
the same initial conditions in both simulated and real tests. We observed a good correspon-
dence between the mean mutual information observed in simulation and in reality, as shown
in Fig. 6 left. Similarly, the mean entropy over 20 trials computed on the tests with physical
robots corresponds to the value obtained in simulation (see Fig. 6 right).
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Table 3 Experiment Ed : fitness F , mean mutual information M̂I and mean entropy Ĥ computed by testing
in simulation the best evolved controller of each evolutionary run for 500 trials of 2000 cycles. Mean value
and standard deviation are shown. The symbol • indicates the runs in which the best evolved individuals
display structured and coordinated behaviours. The symbol ◦ indicates the runs characterised by behaviours
that degenerate with time

Run F M̂I Ĥ Run F M̂I Ĥ

1 • 2.56 ± 0.15 2.57 ± 0.13 3.42 ± 0.03 11 1.45 ± 0.27 1.48 ± 0.25 2.88 ± 0.26

2 • 2.66 ± 0.12 2.71 ± 0.06 3.35 ± 0.08 12 1.46 ± 0.33 1.49 ± 0.33 2.22 ± 0.51

3 • 1.75 ± 0.15 1.77 ± 0.14 2.53 ± 0.13 13 • 1.85 ± 0.08 1.88 ± 0.07 2.99 ± 0.09

4 1.82 ± 0.13 1.84 ± 0.12 3.44 ± 0.25 14 1.24 ± 0.22 1.31 ± 0.21 2.72 ± 0.39

5 • 1.98 ± 0.11 1.99 ± 0.10 3.16 ± 0.06 15 • 2.59 ± 0.12 2.61 ± 0.09 3.31 ± 0.04

6 • 2.69 ± 0.15 2.72 ± 0.11 3.55 ± 0.04 16 1.42 ± 0.12 1.42 ± 0.12 2.35 ± 0.23

7 1.54 ± 0.07 1.54 ± 0.07 1.76 ± 0.06 17 ◦ 2.22 ± 0.15 2.22 ± 0.14 2.55 ± 0.12

8 • 1.92 ± 0.14 1.94 ± 0.12 2.62 ± 0.12 18 1.27 ± 0.28 1.27 ± 0.28 2.07 ± 0.39

9 • 2.17 ± 0.12 2.19 ± 0.10 3.18 ± 0.19 19 ◦ 1.93 ± 0.28 1.94 ± 0.28 2.31 ± 0.21

10 • 2.93 ± 0.07 2.95 ± 0.04 3.54 ± 0.04 20 • 2.02 ± 0.08 2.03 ± 0.08 2.72 ± 0.07

4.2 Experiment Ed

In the second set of experiments, the robots are situated in an arena without a light bulb.
Moreover, robots are not provided with ambient light sensors. Also in this case, we per-
formed 20 evolutionary runs, we selected the best individual of each run and we post-
evaluated it in 500 different trials. As shown in Table 3, the evolved controllers present
lower fitness values compared to the results obtained in experiment El . In this case, in fact,
the fitness varies between 1.24 and 2.93, obtained in run 14 and 10, respectively. The qual-
itative analysis revealed that 11 out of 20 evolutionary runs converge toward structured and
coordinated behaviours. In other two cases—namely runs 17 and 19—the average perfor-
mance is rather high but robots display behaviours that are structured and coordinated only
initially, and later degenerate toward nonstructured behaviours.

Despite the lower number of successful evolutionary runs, the proposed methodology
for the evolution of coordinated behaviour still proves capable of producing good results in
the majority of the tests performed (11 out of 20 evolutionary runs). The smaller number
of successful evolutionary runs and the lower performance obtained in the average within
experiment Ed is a consequence of the absence of the environmental cue that characterises
experiment El . Indeed, all evolutionary runs of experiment El exploit such environmental
cue, which gives a reference point that can be perceived from far away and that can be used
by the robots to initiate and maintain a structured and coordinated behaviour. In contrast, the
absence of the environmental cue forces the robots to search for other regularities that can
be exploited for coordination. Given that the environment does not offer such obvious regu-
larities, they must be extracted from the sensory-motor experience of the robots interacting
with the social environment. Clearly, solutions of this kind are more difficult to evolve, be-
cause they are based on dynamical interactions among robots. However, as we show in the
next section, a number of possible strategies exist to solve this problem.

4.2.1 Behavioural analysis

As mentioned before, the qualitative inspection of the evolved controllers allowed us to
identify 11 evolutionary runs that produce structured and coordinated behaviours. Also in
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Fig. 7 Left: trajectories of the robots produced by the best evolved controller in run 6 of experiment Ed .
Right: the motor states of the three robots are plotted against the number of cycles

this case, after an initial transitory phase, robots perform synchronised movements. Com-
munication is exploited to achieve and maintain synchrony. The behaviours produced by the
evolved controllers can be grouped into three strategies, described as follows.8

The first strategy—the most common one—encompasses the controllers evolved in runs
1, 3, 5, 6, 9, 15, and 20. An interesting example of this strategy is given by run 6, which
presents the highest average fitness within its group. This strategy is characterised by robots
that periodically aggregate and disband, performing oscillatory movements around the cen-
tre of mass of the group and faraway from the walls (see the trajectories in Fig. 7 left and
VideoEd-Run6-9 in the online supplementary material). To do so, robots exploit vision, in-
frared proximity sensors and communication. Vision is mainly exploited in the aggregation
phase during which robots get close one to the other assuming a triangular formation. When
robots are close enough to perceive each other through the infrared proximity sensors, they
disband moving backward. Due to relative differences in robots positions and orientations
with respect to the centre of mass of the group, the behaviour of the three robots is not well
coordinated during the first oscillatory movements. However, the robots quickly converge
toward a well coordinated behaviour, as is apparent looking at the motor states plotted in
Fig. 7 right. Notice also how the motor states vary through time, taking on many different
values: this corresponds to a very structured behaviour, which is also well coordinated as
the robots perform the same actions at the same time. Moreover, the oscillations have dif-
ferent amplitude and duration during a same trial, as can be noticed in Fig. 7 right. This
fact indicates that robots are able to perform a variety of atomic movements, which can be
triggered depending on the particular contingency the robots experience. Nevertheless, they
prove capable of maintaining coordination even when switching between different oscilla-
tion modalities.

The second strategy encompasses the controllers evolved in runs 2, 10, and 13. The high-
est average fitness within this group is obtained by run 10 (see Fig. 8 and VideoEd-Run10
in the online supplementary material). In this case, robots do not interact visually or through
their proximity sensors. They mainly produce a behaviour structured in a sequence of atomic
movements, such as backward motion on a large circle followed by forward motion on a
small circle. These movements are performed without any reference to the position and
orientation of the other robots or to the position and orientation of the robot in the arena,

8See http://laral.istc.cnr.it/esm/sperati-etal-si2008.html.

http://laral.istc.cnr.it/esm/sperati-etal-si2008.html
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Fig. 8 Left: trajectories of the robots produced by the best evolved controller in run 10 of experiment Ed .
Right: the motor states of the three robots are plotted against the number of cycles

Fig. 9 Left: trajectories of the robots produced by the best evolved controller in run 8 of experiment Ed .
Right: the motor states of the three robots are plotted against the number of cycles

provided that robots are located far enough from walls. Robots exploit only the communica-
tion signal to coordinate, and the robots display synchronised movements without keeping
any relation between their relative positions in the arena. As a consequence, coordinated
movements are performed since the very beginning of the trial, because there is no need to
achieve a particular spatial formation (see the motor states plotted in Fig. 8 right).

Finally, the last strategy includes only the controller evolved in run 8 (see Fig. 9 and
VideoEd-Run8 in the online supplementary material). This controller produces a peculiar
behaviour characterised by four atomic movements that last from 10 to 40 seconds—i.e., a
time span considerably longer than those observed in other evolutionary runs, which can be
appreciated by looking at the motor states in Fig. 9 right—which are periodically repeated:
(i) rotating several times to produce a nearly circular trajectory with a diameter of about
8 cm, (ii) rotating several times to produce a spiral trajectory with a diameter decreasing
to 0 cm, (iii) rotating several times on the spot at full speed, (iv) rotating several times to
produce a spiral trajectory with a diameter increasing from about 0 to about 8 cm. Also in
this case, the movements of the robot are performed without any reference to the position and
orientation of the other robots. However, we observed that visual information is exploited to
switch between different rotating modes. Synchronisation of movements also characterises
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Table 4 Experiment Ed : mean mutual information (M̂I) and mean entropy (Ĥ ) computed by testing the
evolved controllers on physical robots for 5 trials of 2000 cycles each. We show here only the evolutionary
runs that successfully transfer to reality from a qualitative standpoint. The column labelled ‘ratio’ indicates
the ratio between the performance observed in hardware and in simulation

Run M̂I Ĥ Ratio

2 2.69 ± 0.06 3.36 ± 0.07 0.99

8 1.91 ± 0.03 2.65 ± 0.06 0.94

9 2.06 ± 0.10 3.21 ± 0.26 0.95

10 2.88 ± 0.05 3.51 ± 0.06 0.98

13 1.66 ± 0.06 2.90 ± 0.20 0.92

this behaviour (see the coordinated motor states in Fig. 9 right), and it is achieved and
maintained exploiting communication only.

4.2.2 Porting to reality

By testing with physical robots all the controllers that proved successful in simulation, we
observed good generalisation only in 5 out of 11 cases, namely runs 2, 8, 9, 10, 13 (see
VideoEd-Run6-9, Run10 and Run8 in the online supplementary material). The main reason
to explain the limited generalisation ability of these controllers is likely to be found in the
fine grained interactions between robots that take place by means of the infrared proximity
sensors. We found that proximity sensors differ significantly in sensitivity and perceptual
range among different physical robots. Similar inter-robot differences were not systemati-
cally simulated, reducing the portability in hardware of the results obtained in simulation.
Indeed, the evolutionary runs that produce qualitatively similar behaviour in simulation and
in reality are characterised by limited interactions through infrared sensors.

For all evolutionary runs that properly generalise to the physical setup, the comparison of
the mean mutual information M̂I and mean entropy Ĥ measured in simulation and in reality
reveals a very good correspondence, as indicated by the high values of the ratio between the
measures in the two conditions (see Table 4).

5 Scalability analysis

One important aspect to be investigated concerns the appropriateness of information theo-
retic measures for the synthesis of behaviours that scale up to larger groups. Such inves-
tigation can be performed either by running new evolutionary experiments involving more
robots, or by testing whether the solutions evolved for small groups of robots properly scale
when tested with larger groups. In this section, we describe the results obtained by following
the latter approach, that is, by testing the controllers evolved with groups of 3 individuals—
as described in the previous section—increasing the group size to 6, 12, 27, and 48 robots.

We first analysed the behaviour of the best evolved controllers of the successful evolu-
tionary runs of experiment El . We increased the number of robots present in the environ-
ment, and we proportionally scaled up the arena size and the number of light sources present
in the arena, in order to maintain a constant robot density and a uniform distribution of light
sources. We performed experiments with 6, 12, 27, and 48 robots (see Table 5 for the cor-
responding experimental setup), and we recorded the fitness of the group computed with
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Table 5 Parameters for the
scalability analysis. We
proportionally varied the number
of robots, the arena size and the
number of light bulbs, in order to
maintain a constant density of
robots and a uniform distribution
of light sources

# robots # light sources arena size

6 2 2 × 1 m

12 4 2 × 2 m

27 9 3 × 3 m

48 16 4 × 4 m

Fig. 10 Scalability analysis for experiment El . The boxplot shows, for each evolved controller, the perfor-
mance obtained in tests with 6, 12, 27, and 48 robots. Each box represents the inter-quartile range of the
data, while the black horizontal line inside the box marks the median value. The whiskers extend to the most
extreme data points within 1.5 times the inter-quartile range from the box. Outliers are not shown

(12) over 100 trials. The results obtained are summarised in Fig. 10. It is possible to notice
that most of the evolved controllers present good scalability, with a slight decrease in per-
formance for increasing group size, due mainly to the slower convergence to synchronous
movements for large groups. In general, robots are attracted by the closest light source, and
therefore they distribute forming small groups around each light. Once aggregated, robots
perform their structured periodic behaviour. Moreover, robots synchronise their movements
with all the other robots, including those aggregated around a different light bulb. In fact,
synchronisation is mostly achieved through the exploitation of the global communication
channel, so that all robots in the arena can perform the same movements at the same time.
In few cases, namely evolutionary runs 4, 13, 14, and 16, the evolved behaviour does not
properly scale with increasing group size. In these cases, in fact, robots also exploit visual
information about the position of teammates. As a consequence, they tend to aggregate with
all other robots, forming large groups. In these conditions, either collisions are more fre-
quent, or the local robot density is too high to allow coordinated movements.

In the case of experiment Ed , the scalability analysis was performed with the same
modalities as for experiment El . The results obtained—presented in Fig. 11—suggest that
scalability varies significantly depending on the behavioural strategy. In particular, the ex-
ploitation of visual information poses severe limitations to those controllers that strongly
rely on it. All behaviours belonging to the first strategy described in Sect. 4.2.1 rely on
visual information to aggregate in one place and to sustain their periodic behaviour. With
increasing group size, robots tend to form large aggregates and become incapable of con-
temporaneously avoiding collisions and producing structured and coordinated behaviours.
Similarly, the controller evolved in run 8 exploits visual information to produce its periodic
behaviour. We observed that the stronger stimulation of the visual sensors prevent the ro-
bots to produce a structured behaviour. The only behaviours that properly scale are the ones
evolved in run 2 and 10, both belonging to the second strategy described in Sect. 4.2.1. In
fact, these behaviours do not rely on visual information, and synchronisation is achieved
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Fig. 11 Scalability analysis for experiment Ed . See Fig. 10 for more details

exploiting communication only.9 Increasing the group size does not alter the ability of ro-
bots to immediately synchronise, so that performance is only slightly affected even with 48
robots, as can be appreciated by looking at Fig. 11.

To conclude, the scalability analysis we presented in this section proves that evolution
of group behaviours exploiting information theoretic measures such as mutual information
can produce coordinated behaviours for large robotic groups. The results obtained indicate
that some of the evolved strategies scale well to significantly larger groups. In future work,
we also plan to run evolutionary experiments with larger groups and with groups of varying
size. In fact, variation in the group size might channel the evolutionary process toward the
selection of scalable solutions.

6 Conclusions

In this paper, we investigated the use of information theoretic measures for the evolution
of coordinated behaviours in groups of homogeneous robots. In particular, we defined a fit-
ness function mainly based on the mean mutual information between the motor states of
all possible robot pairs within a group of three robots. The results obtained show that evo-
lution is able to find solutions that maximise the mutual information. This corresponds, in
qualitative terms, to controllers that produce structured and coordinated behaviours. This is
mainly the result of two different evolutionary drives. On the one hand, the maximisation of
the mutual information corresponds to the maximisation of the individual entropy (see (6)).
This favours the evolution of individual behaviours that allow the robot to visit different
motor states during its lifetime. The embodiment of the robot, and the particular way we de-
fined the computation of the motor state—as defined by (10) and (11)—favour the evolution
of behaviours in which the motor state varies smoothly with time, producing sequences of
atomic movements with varying time duration. These sequences are also periodic, due to the
necessity of visiting as many motor states as possible for multiple times. On the other hand,
the maximisation of the mutual information corresponds to the minimisation of the joint
entropy between the motor states of two robots, which also corresponds to the observation
of motor states that are positively correlated. The homogeneity of the robotic group ensures
that this positive correlation results in synchronous behaviours.

9The situation is different for the behaviour evolved in run 13, which belongs to the same strategy. In this
case, problems are given by the collision avoidance mechanism which exploits the difference between the
self-emitted signal and the average group signal. With many robots, this difference is larger than with 3
robots only, a situation that was never experienced during evolution. As a consequence, not being able to
avoid collisions, robots score a null performance.



Swarm Intell (2008) 2: 73–95 93

We presented the results of two experiments that differ mainly in the characteristics of
the environment, which may or may not offer obvious regularities to be exploited for coor-
dination among the robots. We observed that, when these regularities are present, artificial
evolution finds a way to exploit them to produce structured behaviours and to support the
achievement of coordination among the robots. The situation is more complicated when
such environmental regularities are removed. In this case, we showed how robots rely on
the social environment, either by aggregating in one place and exploiting visual information
or by relying on communication only. In the latter case, it is interesting to notice how syn-
chronous behaviours can be performed without any reference to the position and orientation
of other robots. We also presented the results of tests with physical robots, which should
be considered a proof-of-concept of the applicability of the proposed methodology to real
world scenarios. These tests demonstrate that several of the controllers evolved in simulation
work also with physical robots (12 out of 18 in the El setup, 5 out of 11 in the Ed setup), and
prove that the methodology we propose can produce controllers that reliably function in the
real world. In other words, the results obtained are not based on unrealistic assumptions or
on the exploitation of simulated features—such as uniform white noise—that may not have
a correspondence in the real world. Instead, entropy and mutual information are maximised
by the sensory–motor coordination of the robots, and by the synchronisation of the individ-
ual behaviours. Finally, we presented a scalability analysis of the evolved behaviours. This
analysis proves the applicability of the proposed methodology also to large groups of ro-
bots, and paves the way towards efficient evolution of self-organising behaviours for robotic
swarms.

We believe that the proposed methodology is particularly relevant for swarm robotics re-
search, as it can efficiently synthesise self-organising, coordinated behaviours for a robotic
swarm. In fact, there is a fundamental problem—referred to as the design problem—that
arises in the development of self-organising behaviours for a group of robots (see also Fu-
nes et al. 2003; Trianni et al. 2008, for a detailed discussion of this topic). This problem
consists in defining the appropriate individual rules that will lead to a certain global pattern,
and it is particularly challenging due to the indirect relationship between control rules and
individual behaviour, and between interacting individuals and the desired global pattern. In
this respect, evolutionary robotics is particularly suited to synthesise self-organising behav-
iours. In fact, it bypasses the design problem as it relies on the automatic generation, test and
selection of control solutions for the robotic system as a whole, without the need of an arbi-
trary decomposition of the given control problem into sub-problems (e.g., the desired global
behaviour into individual behaviours and inter-individual interactions, as well as the indi-
vidual behaviour in a set of control rules). The methodology we propose in this paper goes
a step further in this direction: it promotes the evolution of coordinated behaviours without
any constraint imposed by an explicit description of the desired solution. As a consequence,
the proposed approach does not require a thorough knowledge of the system under study to
devise the individual control rules, neither does it need a description of the desired solution
to promote cooperative behaviours, as it can benefit of a task-independent, implicit utility
function.

The proposed methodology represents a first step towards the evolution of self-organising
behaviours for robotic swarms. In future work, we plan to exploit information theoretic
measures in support of the evolution of task-oriented group behaviours. So far, we obtained
synchrony without any constraint on the characteristics of the individual behaviour. We be-
lieve that a task-independent function can be successfully used in combination with a task-
oriented one (on this issue, see also Prokopenko et al. 2006a). The former should provide the
drives to synthesise structured and coordinated behaviour. The latter should simply channel
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the evolutionary process towards individual and group behaviours that serve specific func-
tionalities. Another possible extension over the work presented in this paper concerns the use
of heterogeneous robots. Using different controllers and/or different sensory–motor appara-
tus, it should be possible to observe coordination among the robots that does not forcedly
limit to synchronisation of the movements. Turn taking, entrainment and other forms of
coordination become possible whenever the robots may have access to different sensory–
motor experiences. Finally, we intend to investigate also the possibility of exploiting differ-
ent information theoretic measures and different neural controllers, such as recurrent neural
networks.
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