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Abstract

Self-organised synchronisation is a common phenomenon observed in

many natural and artificial systems: simple coupling rules at the level of

the individual components of the system result in an overall coherent be-

haviour. Owing to these properties, synchronisation appears particularly

interesting for swarm robotics systems, as it allows for robust temporal

coordination of the group while minimising the complexity of the indi-

vidual controllers. The goal of the experiments presented in this paper

is the study of self-organising synchronisation for robots that present an

individual periodic behaviour. In order to design the robot controllers, we

make use of artificial evolution, which proves to be capable of synthesising

minimal synchronisation strategies based on the dynamical coupling be-

tween robots and environment. The obtained results are analysed under

a dynamical system perspective, which allows us to uncover the evolved

mechanisms and to predict the scalability properties of the self-organising

synchronisation with respect to varying group size.

Keywords: Self-Organisation, Synchronisation, Swarm Robotics, Dy-

namical Systems
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1 Introduction

Synchrony is a pervasive phenomenon: examples of synchronous behaviours can

be found in the inanimate world as well as among living organisms [1, 2]. Syn-

chrony may spontaneously emerge from weak interactions among coupled sys-

tems: the synchronisation of pendulums reported by Huygens is probably one

of the first documented examples [3]. In biological systems too, synchrony is

often observable. For instance, the heart pacemaker cells synchronise to achieve

a robust beat, resulting in a system resilient to failures of individual cells [4,5].

Synchronisation among neurons leads to the formation of assemblies of coher-

ent activity that are considered to be at the basis of cognitive processes such as

binding—i.e., the integration of information from different sensory perceptions

of the same phenomenon—, selective attention, learning and memory [6–12].

Similar mechanisms are at the base of the synchronous signalling behaviour ob-

served in various animal species [13]. “Chorusing” is a term commonly used

to refer to the coordinated emission of acoustic communication signals by large

groups of animals. To cite a few, chorusing has been observed in frogs [14], crick-

ets [15] and spiders [16]. It has also been argued that synchronous chorusing in

hominids may have played a fundamental role in the evolution of language and

music [17]. Synchronous displays that do not involve acoustic signals have been

extensively studied in fireflies, which emit coordinated light pulses [18], and in

crabs, which wave their claws in synchrony [19]. Other synchronisation phenom-

ena may have a catastrophic outcome: from epileptic seizures, the Parkinson’s

disease or schizophrenia, which are all caused by excessive synchrony in some

areas of the human brain [20–22], to the side-swaying of the London Millennium

Bridge, which was caused by spontaneous synchronisation of the walking pace

of the many people traversing it on the opening day [23]. Much research has

been dedicated also to the discovery of synchronisation from observable data in

noisy or chaotic conditions, where only the phase locking is relevant while the

amplitudes have no restrictions [24, 25]. For this purpose, analytical tools have
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been introduced based on the definition of the “instant frequency” of the given

signals [26, 27].

How can all these systems—so much diverse from each other—self-organise

to achieve synchrony? This question aroused the research of an answer for

many years, until the appropriate analytical methods were developed [28, 29].

All the above synchronisation phenomena can be modelled as systems of mul-

tiple coupled oscillators. Consider for example the synchronous flashing of fire-

flies: thousands of insects emit light pulses in unison, perfectly synchronising

their individual rhythm. In this case, fireflies can be modelled as a population of

pulse-coupled oscillators with equal or very similar frequencies. These oscillators

can influence each other by emitting a pulse that shifts or resets their oscilla-

tion phase. The numerous interactions among the individual oscillator-fireflies

are sufficient to explain the synchronisation of the whole population (for more

detail, see [4,5,18]). Despite the clear understanding of the mechanism, the func-

tionality of synchronisation or, in the particular case of animal behaviour, its

adaptive significance is not always clear. With respect to chorusing behaviours,

the most convincing hypothesis is that synchrony is an epiphenomenon of the

competition between males to attract females, and results from the attempt of

each individual to anticipate the signal of its neighbours [30].

The synchronisation behaviours observed in Nature can be a powerful source

of inspiration for the design of robotic systems. From manipulators [31] to hexa-

pod robots [32], synchronisation is an important mean to achieve coordination.

This holds particularly for swarm robotics systems [33], in which the emergence

of coherent group behaviours from simple individual rules is emphasised. Cho-

rusing was the metaphor for the coordination algorithm used in a collective

robotics experiment, in order to regulate the group size and let the robots coor-

dinately move towards a target location [34, 35]. Other works take inspiration

from the self-organising behaviour of fireflies: a specialised neural module was

designed for the synchronisation of the foraging/homing activities in a robot

group in order to maximise the overall performance [36]. The same mecha-
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nism was also applied to a cleaning task to be performed by a swarm of micro

robots [37]. Finally, similar synchronising behaviours could be synthesised by

artificial evolution as adaptive mechanisms to reduce the interference among

communicating robots [38].

The goal of the experiments presented in this paper is the study of self-

organising synchronisation in a group of robots based on minimal behavioural

and communication strategies. Similar to the studies presented above, we fol-

low the basic idea that if an individual displays a periodic behaviour, it can

synchronise with other (nearly) identical individuals by temporarily modify-

ing its behaviour in order to reduce the phase difference with the rest of the

group. In other studies, synchronisation is based on the entrainment of the

individual internal dynamics through some form of communication. In this pa-

per, instead, we do not postulate the need of internal dynamics. Rather, the

period and the phase of the individual behaviour are defined by the sensory-

motor coordination of the robot [39], that is, by the dynamical interactions with

the environment that result from the robot embodiment. We show that such

dynamical interactions can be exploited for synchronisation, allowing to keep a

minimal complexity of both the behavioural and the communication level. Now,

the main problem is defining a robot controller able to exploit the dynamical

agent-environment interactions. By relying on a simple kinematic simulator

of our robots, we use artificial evolution to search the space of the possible be-

havioural and communication strategies for the synchronisation problem [40,41].

In particular, we avoid to explicitly reward the use of communication, in order

to leave evolution free to explore the space of the possible solutions that lead

to synchronous behaviour and to allow the evolving robots to co-adapt their

behavioural and communication skills. The obtained results are analysed un-

der a self-organising perspective, evaluating the scalability to large groups of

robots. Moreover, we investigate the scalability of the synchronisation mecha-

nism per se in order to evaluate the efficiency of the evolved strategy when not

constrained by the physical interactions among the robots. Additionally, we test
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the behaviours evolved in simulation with physical robots, therefore providing

a proof-of-concept about the viability of the proposed methodology for robot

controller design.

The main contribution of this paper consists in the analysis of the evolved

behaviours, which employs a dynamical system approach [42]. Dynamical sys-

tems theory is recently acquiring more and more attention in cognitive sci-

ences [43–45] as it can give explanations of cognitive phenomena while they

unfold over time. Concepts like “attractor” and “bifurcation” start to be com-

monly used, and dynamical models are developed—just to name a few—to give

new answers to classic psychology debates such as the A-not-B error in infant

reaching [46], or to account for intrinsically dynamical processes such as inter-

limb coordination [47,48]. In this paper, we introduce a dynamical system model

of the evolved behaviours, in order to uncover the mechanisms that artificial evo-

lution synthesised to maximise the user-defined utility function. Moreover, we

show how the developed model can be used to predict the ability of the evolved

behaviour to efficiently scale with the group size. We believe that such pre-

dictions are of fundamental importance to quickly select or discard obtained

solutions without performing a time-demanding scalability analysis, as well as

to engineer swarm robotics systems that present the desired properties.

This paper is organised as follows. In Section 2, we present the experimen-

tal setup devised to evolve the self-organising synchronisation behaviours in a

simple simulation environment. Section 3 briefly summarises the results ob-

tained from the evolutionary machinery. In Section 4, we provide an analysis

of the evolved behaviours from a dynamical system perspective. In particular,

Section 4.1 introduces a mathematical model of the behaviours evolved in sim-

ulation, which includes some simplifications (e.g., neglecting noise) necessary

for the dynamical system analysis. As we shall discuss, such simplifications

do not influence the relevant aspects of the individual behaviour and of the

synchronisation dynamics, which are described in Sections 4.2 and 4.3. Sec-

tion 5 is dedicated to the scalability properties of the evolved behaviours and
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of the synchronisation mechanism. These analyses are performed exploiting

the simulation environment used for evolutionary optimisation. Additionally, in

Section 5.3 we show how the mathematical model can be exploited to predict

the scalability of the evolved controllers on the basis of the characteristics of

the individual behaviour. Section 6 discusses the results obtained by testing

the controllers evolved in simulation with physical robots. Finally, Section 7

concludes the paper with some discussions about the proposed approach and

the obtained results.

2 Evolution of Self-Organising Synchronisation

In this section, we present the experimental setup defined for the evolution of

synchronisation behaviours. The scenario we propose is simple and idealised.

Nevertheless, it contains all the ingredients necessary to study self-organised

synchronisation in a swarm of robots. The task requires that each robot in the

group displays a simple periodic behaviour, which should be entrained with the

periodic behaviour of the other robots in the arena. The individual periodic

behaviour consists in oscillations along the y direction of the rectangular arena

(see Figure 1). Oscillations are possible through the exploitation of a symmetric

gradient in shades of grey painted on the ground. On the other hand, synchroni-

sation of the robots’ movements can be achieved by exploiting communication.

Robot controllers are evolved in a simulated environment. The simulated

arena is a rectangle of 6 × 3 m completely surrounded by walls. We set an

xy reference frame as shown in Figure 1. The ground is painted in white for

|y| < 0.2 m, and linearly changes to black until |y| = 1 m. For larger distances,

the arena is painted in black. Robots should oscillate on the painted gradient

without moving over the black area. As a consequence, robots can make oscil-

lations with a maximum amplitude of 2 m. Given the symmetry of the painted

gradient, synchronised movements correspond to both in-phase or anti-phase

oscillations. As an example, in Figure 2 we show the y position of three robots
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that perform synchronous oscillations. While the first two robots display in-

phase oscillations, the third robot displays anti-phase oscillations with respect

to the others (see Section 2.3 for more detail). In the following, we give further

details about the experimental setup by describing the robotic platform used

(see Section 2.1), the controller and the evolutionary setup (see Section 2.2) and

finally the fitness function used (see Section 2.3).

2.1 The Robots

The robots used in these experiments are s-bots (see Figure 3), which are small

autonomous robots with the ability to self-assemble [49,50].1 The evolutionary

experiments presented in this paper are performed in simulation, using a simple

kinematic model of the s-bots, and the results are afterwards validated on the

physical platform.

An s-bot weighs 700 g and its main body has a diameter of about 12 cm. Its

design is innovative with respect to both sensors and actuators. The traction

system is composed of both tracks and wheels, each track-wheel pair of the same

side being controlled by a single motor. This combination of tracks and wheels

provides the s-bot with a differential drive motion, which is labelled Differential

Treels c© Drive. The treels are connected to the chassis, which contains the bat-

teries. The main body is a cylindrical turret mounted on the chassis by means of

a motorised joint that allows the relative rotation of the two parts (see Figure 3).

An s-bot is provided with many sensory systems useful for the perception of the

surrounding environment or for proprioception. Infrared proximity sensors are

distributed around the rotating turret and can be used for detection of obsta-

cles and other s-bots. Four proximity sensors placed under the chassis—referred

to as ground sensors—can be used for perceiving the grey level of the ground,

the presence of holes or the terrain’s roughness (see Figure 3). Additionally,

an s-bot is provided with light sensors, temperature/humidity sensors, a 3-axes

1The assembling capability of the s-bots is not the focus of these experiments. For more
detail on self-assembling s-bots, see [51].
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accelerometer and incremental encoders on each degree of freedom. Each robot

is also equipped with sensors and devices to detect and communicate with other

s-bots, such as an omni-directional camera, coloured LEDs around the s-bots ’

turret, microphones and loudspeakers (see Figure 3).

In the experiments described in this paper, we only use the infrared and

ground sensors for perceiving the environmental features, the loudspeaker and

the microphones for sound signalling, and the two motors controlling the treels.

In particular, the loudspeaker and the microphones are used to implement a

global, binary communication system. The loudspeaker can be used to emit a

binary signal with a fixed frequency F = 2500 Hz and an intensity high enough

to be perceived from anywhere in the experimental arena. On the receiver side,

at every control cycle the recordings from the microphones are processed by the

on-board CPU to extract the frequency spectrum. If the intensity perceived in

a small interval around F is above a certain threshold, the binary sound sensor

is set to 1. To summarise, each s-bot can produce a continuous tone with fixed

frequency and intensity. When a tone is emitted, it is perceived by every robot

in the arena, including the signalling s-bot. The tone is perceived in a binary

way, that is, either there is at least one s-bot signalling in the arena, or there is

none.

2.2 The Controller and the Evolutionary Algorithm

Artificial evolution is used to set the connection weights and the bias terms of

simple neural controllers with fixed architecture. The controller of each s-bot

is a fully connected, feed forward neural network—a perceptron network. The

neural network has 11 sensory neurons directly connected to 3 motor neurons.

The sensory neurons are simple relay units and the output neurons are sigmoid

units whose activation is computed as follows:

Oj = σ

(

∑

i

wijIi + βj

)

, σ(z) =
1

1 + e−z
, (1)
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where Ii is the activation of the ith input unit, βj is the bias term, Oj is the

activation of the jth output unit, wij is the weight of the connection between

the input neuron i and the output neuron j, and σ(z) is the sigmoid function.

Six sensory neurons—I1 to I6—receive input from a subset of the infrared

proximity sensors evenly distributed around the s-bot ’s turret. Four sensory

neurons—I7 to I10—are dedicated to the readings of the four ground sensors.

The state of all infrared and ground sensors is linearly scaled to the range

[0.0, 1.0]. A simulated uniform noise within 5% of the input range is also added.

The last sensory neuron I11 receives a binary input corresponding to the percep-

tion of sound signals. The activation states of the first two motor neurons—O1

and O2—is scaled onto the range [−ωM , +ωM ], where ωM is the maximum an-

gular speed of the wheels (ωM ≈ 4.5 s−1). The third motor neuron controls the

speaker in such a way that a sound signal is emitted whenever the activation

state O3 is greater than 0.5.

The evolutionary algorithm is based on a population of 100 genotypes, which

are randomly generated. This population of genotypes encodes the connection

weights of 100 neural controllers. Each connection weight is represented with

a 8-bit binary code mapped onto a real number ranging in [−10, +10]. Sub-

sequent generations are produced by a combination of selection with elitism

and mutation. Recombination is not used. At each generation, the 4 best

individuals—i.e., the elite—are retained in the subsequent generation. The re-

mainder of the population is generated by mutation of the 20 best individuals.

Each genotype reproduces at most 5 times by applying mutation with 3% prob-

ability of flipping a bit. The evolutionary process runs for 500 generations.

Simple algorithms of this type—i.e., mutation only and binary encoding of neu-

ral network weights—are widely used in the evolutionary robotics domain (for

a review, see [40, 41]).
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2.3 The Fitness Computation

During evolution, a genotype is mapped into a control structure that is cloned

and downloaded onto all the s-bots taking part in the experiment (i.e., we make

use of a homogeneous group of s-bots). Each genotype is evaluated 10 times—

i.e., for 10 trials. Each trial differs from the others in the initialisation of the

random number generator, which influences the initial positions and orientations

of the s-bots within the arena. Each trial lasts T = 900 simulation cycles, which

correspond to 90 seconds of real time.

The fitness of a genotype is the average performance computed over the 10

trials in which the corresponding neural controller is tested. During a single

trial, the behaviour produced by the evolved controller is evaluated by a 2-

component fitness function: F = 0.5 · FM + 0.5 · FS ∈ [0, 1]. The movement

component FM rewards robots that move along the y direction within the arena:

FM =
1

TR

R
∑

r=1

T
∑

t=1

|∆y(t, r)|

∆Y
, (2)

where R = 3 is the total number of robots in the group, ∆y(t, r) is the variation

of the y position of s-bot r at cycle t, and ∆Y is the maximum possible varia-

tion, which corresponds to the s-bot moving at maximum speed in a direction

parallel to the y axis. This fitness component rewards fast motion along the y

direction. The oscillatory behaviour evolves because the arena is surrounded by

walls and by the black-painted area, so that oscillations during the whole trial

are necessary to maximise FM.

The second fitness component FS rewards synchrony among the robots. Syn-

chrony among two s-bots can be evaluated as the cross-correlation coefficient

between the sequences of movements parallel to the y axis performed during a

trial. In order to encode the s-bot movements, we define the following function:

d(t, r) = y(t, r) ·
∆y(t, r)

∆Y
, (3)
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which depends on the y position of s-bot r at time t and on its displacement

along the y direction. We chose to consider not only the absolute position but

also the displacement in order to take into account the direction of oscillatory

movements—e.g., away from or towards the x axis. The cross-correlation coef-

ficient φr1r2
of two sequences d(t, r1) and d(t, r2) can be defined as:

φr1r2
=

Φr1r2
√

Φr1r1
Φr2r2

, Φr1r2
=

1

T

T
∑

t=1

d(t, r1)d(t, r2). (4)

The coefficient φr1r2
can take values in [−1, 1], where a value of 1 indicates

perfect synchrony and a value of -1 indicates perfect asynchrony. Notice that,

given the symmetry of d(t, r) with respect to movements away from or towards

the x axis—see equation (3)—synchrony is rewarded also when robots perform

the same movements at the same distance from the x axis, but on opposite sides

of the x axis and in opposite directions. This is necessary due to the symmetric

gradient in the arena, as shown in Figure 1, which results in identical perception

of the gradient by the robots in the upper and lower part of the arena. Given

equation (4), the synchrony component FS is computed as the minimum among

the cross-correlation coefficients of all possible pairs 〈r1, r2〉 among the s-bots,

bounded in [0, 1]:

FS = max{0, min
r1 6=r2

φr1r2
}. (5)

In addition to the fitness computation described above, two indirect selective

pressures are present. First of all, a trial is stopped when an s-bot moves over

the black-painted area, and we assign to the trial a performance F = 0. In this

way, robots are rewarded to exploit the information coming from the ground

sensors to perform the individual oscillatory movements. Secondly, a trial is

stopped when an s-bot collides with the walls or with another robot, and also

in this case we set F = 0. In this way, robots are evolved to avoid collisions.
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3 Results

We performed 20 evolutionary replications, each starting with a different popu-

lation of randomly generated genotypes. Each replication produced a successful

synchronisation behaviour, in which robots display oscillatory movements along

the y direction and synchronise with each other according to the requirements

of the fitness function. To assess the quality of the evolved behaviours, we se-

lect a single genotype per evolutionary replication to be chosen among the best

individuals of the final generation. To do so, we evaluate the performance of the

20 best individuals of the final generation in 500 different trials, and we choose

the individual with highest average fitness. In the remainder of the paper, we

refer to the best controllers evolved in replication i as ci, i = 1, .., 20. The

performance of these controllers over the 500 post-evaluation trials, sorted ac-

cording to decreasing median values, is shown in Figure 4. The obtained results

show that in most replications the performance obtained is in average within

the interval [0.7, 0.9], which indicates that robots are able to maximise both

the movement fitness component, FM, and the synchronisation component, FS .

In order to assess the difference in performance among the controllers evolved

in different evolutionary replications, we used the performance data recorded

over 500 trials to perform a series of pairwise Wilcoxon tests among all possible

controller couples. The results are plotted in Figure 4 as vertical lines span-

ning over the controller numbers having a performance that is not statistically

different (at 99% confidence). So, for example, controllers c13 and c15 are not

statistically different from the performance point of view. Similarly, controller

c1 has a performance equivalent to c18 and c19, but it performs worse than con-

trollers c10 and c14. As can be seen in Figure 4, controller c8 outperforms all

other controllers. In the following, we give a detailed analysis of the behaviour

produced by c8 and by other controllers, in order to uncover the mechanisms

that lie behind the evolved synchronisation behaviours.
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4 Behavioural Analysis

A qualitative analysis of the obtained controllers reveals that the behaviours

produced are quite similar to one another.2 In general, it is possible to distin-

guish two phases in the evolved behaviours: an initial transitory phase during

which robots achieve synchronisation, and a subsequent synchronised phase.

The transitory phase may be characterised by physical interferences between

robots due to collision avoidance, if robots are initialised close to each other.

The collision avoidance behaviour performed in this condition eventually leads

to a separation of the s-bots in the environment, so that further interferences

to the individual oscillations are limited and synchronisation can be achieved.

During the synchronous phase, collision avoidance is therefore less probable,

but still possible due to the environmental noise, which may make robots devi-

ate from their normal movements and approach other robots. Otherwise, this

phase is characterised by stable synchronous oscillations of all s-bots, and small

deviations from synchrony are immediately compensated.

In all replications, s-bots present periodic oscillations with varying amplitude

on the y direction. Concerning the synchronisation mechanisms, it is possible

to classify the evolved solutions into two main classes. The first class is char-

acterised by a synchronisation mechanism that we refer to as the modulation

mechanism: s-bots synchronise by modulating their oscillatory behaviour in re-

sponse to a perceived communication signal coming from other robots. This

class is composed of 15 controllers, including the best evolved controller c8. The

second class includes the remaining 5 controllers, and is characterised by a syn-

chronisation mechanism that we refer to as the reset mechanism: in response to

the perceived communication signal, s-bots “reset” their oscillation by moving

to a particular position over the painted gradient, waiting for the other robots

to reach a similar position. We selected controller c10 to study the properties of

the reset mechanism, since this controller has the highest performance within its

2Videos of the evolved behaviours can be found at http://laral.istc.cnr.it/esm/

trianni-nolfi-ieeetec09.
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class. In Section 4.2, we give a quantitative analysis of the individual behaviour

produced by controllers c8 and c10. Subsequently, Section 4.3 is dedicated to the

synchronisation behaviour. In both cases, we make use of concepts borrowed

from dynamical systems theory. To do so, we model our robotic system as a

discrete-time dynamical system, which is the subject of the following section.

4.1 Dynamical System Modelling

We want to analyse the behaviour of a group of robots that synchronise their

periodic oscillations. Our main interest is the understanding of both the indi-

vidual behaviour—i.e., the periodic oscillation—and the synchronisation mecha-

nism. Such understanding may be useful to predict some features of the evolved

behaviour, e.g., the scalability discussed in Section 5.3. However, some sim-

plifications are necessary for such a study. First of all, we neglect the collision

avoidance behaviour among robots and between robots and the arena walls, as if

robots were placed in a infinite arena, in which the chances to encounter another

robot are null (assumption I ). This seems a strong simplification, above all for

what concerns the group behaviour, which may be deeply influenced by physical

interactions and collision avoidance (in this respect, see Section 5.1). However,

notice that to the extent of describing the individual oscillatory behaviour, colli-

sion avoidance with walls does not play a major role because robots are evolved

to exploit the grey gradient for their movements. Similarly, the synchronisation

mechanism does not rely on collision avoidance among robots, since evolution

was performed with a rather low density of robots, so that physical interactions

are not frequent enough to be exploited for synchronisation. Observations of

the evolved behaviours confirm that collision avoidance can be neglected for our

purposes. We will consider physical interactions again in the scalability analysis

and when real world scenarios are considered (see Section 5 and Section 6). A

second simplification is to ignore any form of noise, assuming that it is not ex-

ploited by the evolved behaviours (assumption II ). Also in this case, preliminary

behavioural analyses suggested that noise is not relevant for the production of
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the individual oscillatory behaviour or for synchronisation. The third simpli-

fication concerns the dynamics of the individual robot: we neglect all second

order dynamics such as acceleration and inertia (assumption III ). The reason is

twofold. On the one hand, the simulator used to evolve the robot controllers is

kinematic, and already neglects second order dynamics. On the other hand, the

maximum speed of the s-bots is rather low (about 0.112m/s) while friction of

the treels is rather high, so that an s-bot can accelerate to the maximum speed

or completely stop in a single control cycle.

Consider a single robot placed in the experimental arena. On the basis of

the simplifying assumptions described above, its behaviour can be completely

characterised by the interaction with an idealised noise-free environment, medi-

ated by the control rules encoded in the neural network controller. The neural

controller is reactive and can be described as a function that associates the

sensor inputs to the motor outputs:

O(t) = N (I(t), c), (6)

where I(t) and O(t) represent the vector of inputs and outputs of the neural

network, and c is the vector of evolved parameters that characterise the neural

controller. Notice that the analytical form of function N is given in equation (1).

The input vector is defined by the sensor readings of the robot. Here, we

make use of assumptions I and II discussed above. By assuming that there

are no collisions between walls and other robots and that there is no noise, we

can completely ignore the infrared proximity sensors. As a consequence, the

vector I(t) is determined only by ground and sound sensors. Ground sensors

are completely characterised by the position of the robot in the environment.

More precisely, the readings of the ground sensor depend on the y position and

orientation θ of the robot over the grey gradient. It is therefore possible to

determine a function that, given the robot position y, its orientation θ, and the
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perceived sound s at time t, returns the vector of inputs I(t):

I(t) = I(y(t), θ(t), s(t)) = I(y, θ, s)|t. (7)

Hereafter, we use the abbreviated notation |t to indicate that a certain variable

or a set of variables is evaluated at time t.

The output vector O(t) is used to determine the speed of the robot treels

and the status of the loudspeaker. Assumption III implies that the variation

in position and orientation of the s-bot depends only on the speed of the two

treels. It is therefore possible to determine a function that associates the output

vector to the new position of the robot:

〈y(t + 1), θ(t + 1), S(t + 1)〉 = O(O(t)), (8)

where S(t) is the signal emitted at time t. The sound perception at time t + 1

is determined by the emitted signal S(t + 1), together with the emitted signals

of the other s-bots. In other words, s-bots are coupled by means of the global

binary communication channel they are provided with, so that it is possible to

determine the following coupling rule:

s(t) = max
r

Sr(t) ∈ {0, 1}, (9)

which specifies that a binary signal is perceived if and only if at least one s-

bot r is signalling. Note that the sound perception s(t) is equal for all robots

in the environment because communication is global and binary. When there

is only one robot, the above coupling rule simplifies to s(t) = S(t). Putting

everything together, we obtain a discrete-time formulation of the behaviour of

the individual robot:

〈y, θ, s〉|t+1 = O(N (I(y, θ, s)|t, c)) = Bc(y, θ, s)|t. (10)
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The function Bc is responsible for producing the individual behaviour of an s-bot

as defined by the parameters c of the evolved controller.

What happens with R robots? Under assumption I, the only interaction

among s-bots is a communicative one, given by the coupling introduced in equa-

tion (9). It is therefore possible to define the following discrete-time dynamical

system of 3R + 1 equations:



































〈y1, θ1, S1〉|t+1 = Bc(y1, θ1, s)|t
...

〈yR, θR, SR〉|t+1 = Bc(yR, θR, s)|t

s|t+1 = maxr Sr|t+1

. (11)

In the following, we make use of equation (10) to discuss the behaviour of a

single s-bot. In Section 4.3, we base ourselves on equation (11) in order to

characterise the synchronisation mechanism.

4.2 Individual Behaviour

The behaviour of the individual s-bot can be studied looking at how position y,

orientation θ and perceived sound s vary over time. To do so, we numerically

integrate3 equation (10) to compute a vector field showing the instantaneous

direction and magnitude of change for each point in the phase space 〈y, θ, s〉.

This is a 3-dimensional space where y and θ are continuous variables that vary

respectively in the range4 [−1, 1] and [0, 2π], while s is a binary variable. In

particular, the θ dimension represents an angle and it presents periodic boundary

conditions, so that trajectories exceeding one edge of the [0, 2π] interval continue

from the opposite edge.

Controller c8 We are now ready to analyse the behaviour of the best evolved

controller c8, which belongs to the modulation mechanism class. Figure 5

3The programs developed to numerically integrate the developed model are available at
http://laral.istc.cnr.it/esm/trianni-nolfi-ieeetec09.

4Recall that the black painted area of the experimental arena is forbidden to the s-bots.
This area is characterised by |y| > 1.

17



presents various plots of the vector fields. The top-left 3D plot suggests how

the state of an s-bot starting at any point in its phase space evolves over time.

Together with the vector field, the continuous line indicates a closed orbit, due

to the 2π-periodic boundary conditions of θ. This closed orbit appears to be

a limit cycle attractor, as indicated by the convergence of all trajectories com-

puted from starting positions extensively covering the phase space (data not

shown). The existence of such a limit cycle attractor indicates that the individ-

ual behaviour produces a stable, periodic motion. The plots at the bottom of

Figure 5 reveal the details of such periodic oscillations. An s-bot positioned at

〈y, θ, s〉 ≈ 〈0, 3

2
π, 0〉 follows the directions indicated by the bottom-left vector

field, which are parallel to the y axis: the robot moves on a straight line until

y ≈ 0.75. At this point, the vector field indicates that the trajectory jumps

to plane s = 1, which corresponds to the s-bot signalling and therefore per-

ceiving its own signal. The robot now follows the direction indicated by the

bottom-right vector field, which corresponds to a clockwise rotation at constant

y, followed by a circular trajectory. During this movement, the s-bot keeps

on signalling until its trajectory jumps back to plane s = 0. Now, the robot

moves straight again, crosses the x axis and performs an identical sequence of

movements on the opposite side of the arena until it comes back to the initial

position. It is worth noting the symmetry of the vector fields, which reflects the

symmetry in the gradient painted on the arena floor.

Other important information can be extracted from the vector field: the sig-

nalling behaviour. For any state 〈y, θ, s〉, the vector field indicates the variation

of the perceived signal ∆s(y, θ, s). By comparing the variation ∆s for s = 0 and

s = 1, it is possible to distinguish four different signalling behaviours:

1. no signal is emitted for all positions with ∆s(y, θ, 0) = 0 and ∆s(y, θ, 1) =

−1.

2. a continuous signal is always emitted for all positions with ∆s(y, θ, 0) = 1

and ∆s(y, θ, 1) = 0. We refer to this behaviour as environment-driven
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signalling, because it depends entirely on the position of the s-bot in the

environment.

3. a continuous signal is emitted for all positions with ∆s(y, θ, 0) = 0 and

∆s(y, θ, 1) = 0, but only in response to a perceived signal. Otherwise, no

signal is produced. We refer to this behaviour as signal-driven signalling.

4. an alternate signal is emitted for all positions with ∆s(y, θ, 0) = 1 and

∆s(y, θ, 1) = −1. In other words, signalling is driven by the s-bot position,

but it is inhibited by the perception of a signal. As a consequence, the

s-bot continuously switches the loudspeaker on and off. We refer to this

behaviour as alternate signalling.

Figure 5 shows the signalling behaviour of c8 in the top-right plot. Different

signalling behaviours are indicated by filled circles of varying grey-levels. Notice

that the limit cycle attractor traverses areas of the phase space characterised

by varying signalling behaviour. A signal is produced when the s-bot enters

the “environment-driven” area, and is stopped when the s-bot exits from the

“signal-driven” area. Entering the signal-driven area having s = 0 does not lead

to the emission of a signal, while entering with s = 1 maintains the previous

signalling status.

In short, the behaviour of the s-bot is the result of the dynamics defined

by two different vector fields, one characterised by no perceived signal (s = 0)

and one characterised by a continuous signal (s = 1). In the latter case, the

dynamics are characterised by a limit cycle attractor corresponding to the forced

perception of a continuous signal (see the dotted line in the bottom-right plot

of Figure 5). It is possible to notice how an s-bot moving along the normal

limit cycle attractor approaches this “forced” attractor when s = 1. However,

in approaching this attractor, the s-bot enters the “no signalling” area, and

therefore it switches to movements dictated by the vector field for s = 0. Notice

that in the latter case, an attractor does not exist within the range of possible

values for y and θ. Nevertheless, the vector field is oriented such that the s-bot
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encounters the signalling area again, and therefore switches back to movements

towards the s = 1 attractor.

Controller c10 The individual behaviour produced by controller c10—an ex-

ample for the reset mechanism class—is presented in Figure 6. The 3D plot

in the top-left of the figure shows the vector field and the limit cycle attractor

that corresponds to the individual oscillatory behaviour. Looking at the vec-

tor field, it is possible to notice that an s-bot always emits a signal, which can

be either alternate or environment-driven. As a consequence, the limit cycle

attractor either lies in the s = 1 plane or it jumps back and forth between

the two planes (i.e., the s-bot produces an alternate signalling pattern). The

signalling behaviour for each position in the environment is better represented

in the top-right plot, in which it is displayed together with a projection of the

limit cycle attractor on the y θ plane. In this case, there exist only two areas

with different signalling behaviour, which are anyway sufficient to support the

synchronisation among s-bots as discussed in Section 4.3. To give an idea of the

average direction of motion of the s-bot while perceiving an alternate signal, we

plotted the average vectors obtained from the two vector fields given by s = 1

and s = 0 in the bottom-left part of Figure 6. On the bottom-right, instead,

we show the vector field for s = 1. Looking at these plots, it is easy to de-

scribe the periodic oscillations of an s-bot as sequences of straight movements

and anti-clockwise rotations. Also in this case, the behaviour of the s-bot is

characterised by two vector fields corresponding to the perception of alternate

and continuous signalling patterns. By forcing the perception of these patterns,

it is possible to compute the attractors for alternate and continuous signalling.

Alternate signalling leads to a limit cycle attractor, displayed as a dotted line in

the bottom-left plot of Figure 6. Continuous signalling leads to two fixed point

attractors displayed as crosses in the bottom-right plot of Figure 6. We can

describe the s-bot ’s oscillatory behaviour as the alternate convergence towards

these attractors. By moving towards one attractor, the s-bot exits from the
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corresponding signalling area and switches to movements towards the second

attractor, which eventually lead the robot out of the second signalling area.

This process generates a self-sustained oscillation. In particular, whenever an

s-bot perceives a continuous signal, it moves towards a fixed point in the y θ

space. The presence of such fixed points—which we refer to as the reset con-

figurations—is a characterising feature of this class of behaviours and has a

key role in the synchronisation mechanism, as we shall discuss in the following

section.

4.3 Synchronisation Behaviour

In the previous section, we described the individual behaviour displayed by an

s-bot. In particular, we focused on the stable oscillatory behaviour, ignoring

the transitory phase that leads to the periodic motion. This transitory phase is

relevant for the onset of synchronisation in groups of robots that influence each

other until stable synchronous oscillations emerge. In this section, we exploit the

dynamical system model introduced above to discuss the mechanisms that lead

to synchrony. In particular, we use the formulation given in equation (11), which

accounts for multiple robots coupled by a global binary communication channel.

From equation (11), we observe that the s-bots ’ movements are governed solely

by the individual behaviour Bc, which was analysed in the previous section, and

by the coupling rule (9), which states that a signal is perceived whenever any

s-bot emits a signal. As a consequence, it is possible to describe the behaviour

of synchronising s-bots by looking at how the individual movements change with

respect to incoming signals. In the following, we give such a description for both

controllers c8 and c10, for a system composed of 2 s-bots. The generalisation to

R s-bots is the object of the scalability analysis (see Section 5).

Controller c8 In order to describe the synchronisation for the modulation

mechanism class of controllers, we analyse the transitory phase of two s-bots

governed by c8 while they entrain their oscillations. Figure 7 presents various
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plots that represent different stages of the synchronisation. In the upper part,

the position y for the two robots—as predicted by the mathematical model—is

plotted with respect to time. It is possible to observe that after an initial transi-

tory phase, the robots converge towards coordinated movements. In particular,

the position y is “modulated” through communicative interactions: the robot

that signals first influences the behaviour of the other robot, which anticipates

the turnabout in response to the perceived signal. A better idea on how syn-

chronisation is achieved is given by plotting the trajectories of the two robots

over the vector fields for s = 0 and s = 1 (see the central and bottom plots of

Figure 7). The two s-bots start in the points indicated by ‘O’, none of which

is signalling. As a consequence, the s-bots follow the top-left vector field, until

they reach the point indicated by an ‘A’. At this stage, one of the robots emits a

signal (solid line), that triggers a behavioural change: the robots now follow the

top-right vector field and both perform a clockwise turn. However, this rotation

is not performed at the same speed: the robot at larger y (solid line) moves

faster than the other (dotted line), as indicated by the size of the arrows of the

vector field. The distance between the two robots is substantially reduced at

this stage, which ends with the robots reaching the points indicated with ‘B’.

In the interval from points ‘B’ to points ‘C’ no robot is signalling and no inter-

action is present. When the first robot enters the environment-driven signalling

area (solid line), it again modifies the behaviour of the second robot (dotted

line) by triggering an anticipated turnabout: the trajectories get closer to one

another because of the difference in speed between a normal and an anticipated

turnabout, eventually reaching point ‘D’ (see the bottom-left vector field), and

with the same modulation mechanism the two trajectories nearly coincide by

passing from points ‘E’ to ‘F’, as shown in the bottom-right vector field.

A formal analysis of the synchronisation behaviour can be performed exploit-

ing the Phase Response Curve (PRC) associated with the individual oscillations.

A PRC is obtained by delivering a precisely timed perturbation to an uncoupled

oscillator, and measuring the effects on the oscillator period [52,53]. More pre-
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cisely, given the period T of the oscillator, a perturbation is applied at a phase

φ = tp/T , where tp is the beginning of the perturbation. Then, the perturbed

period Tp is measured and a phase response F (φ) = (T −Tp)/T is calculated: a

positive value represents a phase advance—i.e., the oscillator is pushed forward

by the perturbation; conversely, a negative value represents a phase delay. In

this work, we measure the free-running period T of the s-bot ’s oscillatory be-

haviour as the time between two consecutive entries in the no-signalling area.

We record the signalling pattern emitted during a single period, and we use

such recording as perturbation, delayed by a phase φ as indicated in Figure 8

(at the top of the figure). Given that the perturbation lasts a full period T ,

we measure its effects asymptotically looking at the difference in phase between

perturbed and free-running oscillations, once the perturbed oscillation has set-

tled back on the limit cycle attractor [54]. The normalised PRC for controller

c8 is plotted in Figure 8 (at the bottom). On the one hand, for small φ < 0 we

observe a phase advance—i.e., whenever an s-bot perceives a signal shortly be-

fore signalling itself, the s-bot reacts by slightly anticipating the following signal

emission. On the other hand, for φ > 0 we observe a phase delay—i.e., whenever

an s-bot perceives a signal after signalling itself, it reacts by delaying the follow-

ing signal emission. In both cases, we observe a tendency to reduce the phase

difference with the perceived signal by “modulating” the signal emission time.

The onset of synchronisation is mainly the result of this modulation mechanism.

Exact synchronisation is obtained due to the zero phase response observable for

small positive φ, which allows a reciprocal fine-tuning of the phases between the

coupled oscillators.

Controller c10 The reset mechanism class of controllers presents a slightly

different synchronisation behaviour with respect to the modulation class. The

main difference consists in the presence of fixed point attractors towards which

the trajectories converge when an external signal is perceived. Figure 9 presents

the synchronisation phase for two robots controlled by c10. The upper plot shows
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that the distances of the two robots initially approach each other, because of

the fact that one of the robots keeps a constant position y ≈ 0.7. After this

initial phase, the robots start oscillating and rapidly achieve synchrony. The

details of the reset mechanism can be assessed looking at the trajectories of

the two robots plotted over the vector fields (see the central and bottom plots

in Figure 9). In the initial phase, the robots move from points ‘O’ to points

‘A’. The robot with smaller y (dotted line) is placed in the environment-driven

signalling area and it is therefore emitting a continuous tone (see the top-left

vector field). The other robot (solid line) rapidly converges onto the fixed point

attractor, i.e., the reset configuration indicated by a cross in the figure. It

remains there as long as a continuous signal is perceived, i.e., until the second

robot enters the alternate signalling area (see the points indicated by ‘A’). At

this stage, the y position of the two robots is very close, but they present a

large discrepancy in the orientation θ, which is reduced due to the different

rotation speed between the robots. When the robots reach points ‘B’, they are

very close to each other. At this point, continuous signalling starts again, and

robots exchange roles: while approaching the points ‘C’, one robot (dotted line)

moves towards the second fixed point attractor, slowing down in order to stop

there, further reducing the distance from the other robot (solid line). When

points ‘C’ are reached, alternate signalling starts again and the robots reduce

the difference in their orientation due to slightly different rotation speed (see

the bottom-left vector field). From points ‘D’ to ‘E’ the robots nearly converge

to the same trajectory, eventually achieving synchronous movements at points

‘F’ and ‘G’.

Simplifying, we observed that synchronisation of the y position is achieved

mainly through convergence toward the reset configuration, which is maintained

as long as a continuous signal is perceived. Refinements still take place during

the oscillatory motion due to a reduced velocity of the robots while approaching

or leaving the reset configuration. This is also evident looking at the PRC

corresponding to this behaviour (see Figure 10), which was computed in the
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same way as for controller c8, taking as reference point for the identification

of the free-running period the entry in the alternate signalling area. In this

case, for both φ > 0 and φ < 0 a phase delay is observed, which is a result

of the slow convergence of the s-bot toward the fixed point attractor described

above. This behaviour can be interpreted as the s-bot consistently trying to

delay its signal emission. Synchrony arises from the mutual interactions of two

coupled oscillators that always try to signal the latest. In fact, as observed

above, the s-bots switch role at each iteration until synchronisation is achieved.

It is interesting to notice that a similar mechanism is considered at the basis of

chorusing in many animal species, where synchrony results from the attempt of

each individual to anticipate the signal of its neighbours [30].

5 Scalability Analysis

So far, we have given a detailed description of the synchronisation mechanism

employed by the two classes of evolved controllers, i.e., the modulation mecha-

nism and the reset mechanism. We have described the onset of synchronisation

giving examples with two s-bots only, but no prove is given that the described

mechanisms scale to a larger number of robots. In this section, we provide a

scalability analysis that aims at testing all evolved behaviours with a varying

number of robots. We first test the evolved behaviours in the original simu-

lation environment, which includes all the features that were neglected in the

dynamical system model (e.g., physical interactions and environmental noise,

see Section 5.1). Then, the scalability of the synchronisation mechanism per se

is presented in Section 5.2, and predictions from the mathematical model are

discussed in Section 5.3.

5.1 Scalability of the Evolved Behaviours

In order to establish to what extent the evolved behaviours function with in-

creasing group size, we performed a series of tests evaluating the performance
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of the evolved behaviour with groups of 3, 6, 12, 24, 48 and 96 s-bots. Tests are

performed with the same simulation environment used for the evolutionary op-

timisation, and the performance is measured according to the description given

in Section 2.3, without any modification. In order to ensure a fair comparison

in different trials, we decided to keep a constant, uniform density of robots in

the arena. In fact, in a crowded situation, the ability to synchronise would be

disrupted by frequent physical interferences—i.e., evolved collision avoidance

behaviour—among robots and between robots and walls. By ensuring a con-

stant initial density we limit the negative effects of overcrowding and are able

to compare the performance of the system with varying group size. In order

to keep a constant robot density equal to the one used in the evolutionary ex-

periments, that is, 0.25 robots per square meter, we lengthened the arena in

the x direction. So, for instance, a group size of 96 robots corresponds to an

arena with a length of 192 m. Despite the increased arena length, we keep the

same communication protocol, i.e., communication continues to be binary and

global, with all robots affecting each other.5 This choice allows us to evalu-

ate the scalability of an evolved behaviour without modifying the features of

the communication channel. In this way, we hope to understand under which

conditions behaviours evolved with three robots scale to large groups.

Using the above setup, we evaluated all best evolved controllers 100 times for

each group size. The obtained results are presented in Figure 11. It is possible

to notice that most of the best evolved controllers have a good performance for

groups composed of 6 s-bots. Performance degrades for larger group sizes and

only a few controllers produce scalable behaviours up to groups formed by 96

s-bots. The main problem that reduces the scalability of the evolved controllers

is given by the higher probability per time step of physical interactions among

robots: in fact, the larger the group size, the more probable the encounters

5With respect to real word scenarios, this choice may seem unrealistic. However, other
communication modalities than sound signalling may be employed to provide physical robots
with a global, binary communication protocol. For instance, s-bots are provided with a WiFi
interface, which could be employed to send and receive messages, independent of the distance
among the robots.
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among robots per time step, despite the constant initial density we introduced.

This is confirmed by the higher number of collisions detected with larger groups.

Recall that a null performance is assigned to each trial that terminates because

s-bots did not manage to avoid each other (see Section 2.3). For some controllers,

such as c3 and c4, the number of trials terminated due to collisions increases

with the group size, as is evident in Figure 11. Nevertheless, whenever s-bots

successfully avoid collisions, their dodging movements provoke a temporary de-

synchronisation of at least two robots, which have to re-gain synchronisation.

Considering this, the reduction in performance observed for large groups can be

explained by the following reasons:

• the higher the group size, the longer the transitory phase that leads to

synchronous oscillations. During the transitory phase, physical interac-

tions among s-bots are more probable because the robots have not yet

settled into stable oscillations;

• the computation of the synchronisation component FS conservatively chooses

the minimum cross correlation among all s-bot pairs (see equation (5)).

As a consequence, even a few physical interactions may lead to a strong

decrease in performance;

• global and binary communication implies that the whole group is influ-

enced by the attempt of a few robots to re-gain synchronisation. In other

words, the movements of all s-bots may be influenced by the attempt of a

single s-bot to synchronise.

All the above reasons contribute to reduce the scalability of the evolved con-

trollers. In addition, another interference among robots limits the scalability.

This is a communicative interference that does not allow the robots to interact

through sound signals, and therefore to synchronise. We discuss this problem

in the following section, which is dedicated to the scalability of the evolved

synchronisation mechanisms.
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5.2 Scalability of the Synchronisation Mechanism

In this section, we analyse the evolved controllers in order to uncover the effect

of an increasing group size over the synchronisation mechanisms described in

Section 4. To do so, we modify the simulation environment in order to neglect

the physical interactions among robots and between robots and walls, whose

influence has been discussed in the previous section. Noise is simulated as

described in Section 2. Using the same experimental setup described above,

we perform an analysis for different group sizes focusing on the synchronisation

aspect only. The obtained results are plotted in Figure 12. Differently from what

was observed above, in this case many controllers present very good scalability,

with only a slight decrease in performance due to the longer time required by

larger groups to exactly synchronise (see controllers c2, c8, c10, c12, c14, c18 and

c19). Controllers c5 and c6 present good scalability, but are characterised by

a potential loss in performance due to slow convergence to synchrony of large

groups. This result confirms the analysis given in the previous section about

the negative impact of physical interferences among s-bots. In fact, removing

the necessity to avoid collisions leads to scalable behaviours.

Nevertheless, many other controllers present poor scalability properties. In

these cases, the performance presents a high variance up to a certain group

size. Then, the performance stabilises at a low, constant value, independent

from the initial conditions and the number of robots used. This value, which is

characteristic of each non-scaling controller, represents the performance of an

incoherent behaviour of the robots. In other words, for every initial condition

we tested, all robots converged to a stable behaviour without being capable of

synchronising with any other robot. By observing the actual behaviour pro-

duced by these controllers, we realised that the incoherent state is caused by

a communicative interference problem: the signals emitted by different s-bots

overlap in time and are perceived as a fixed signalling pattern, either continuous

or alternate (recall that the sound signals are global and that they are perceived

in a binary way, preventing an s-bot from recognising different signal sources).
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If the perceived signal does not vary in time, it does not bring enough informa-

tion to be exploited for synchronisation. This problem is the result of the fact

that we used a “global” communication form in which the signal emitted by an

s-bot is perceived by any other s-bot anywhere in the arena. Moreover, from

the perception point of view, there is no difference between a single s-bot and

a thousand signalling at the same time. The lack of locality and of additivity

is the main cause of failure for the scalability of the evolved synchronisation

mechanisms. However, as we have seen, this problem affects only some of the

analysed controllers. For the remaining controllers, the evolved communication

strategies present a very good scalability that is only weakly influenced by the

group size. A discussion about the causal relationship between the individual

behaviour and scalability is given in the following section.

5.3 Predictions of the Mathematical Model

Given the individual behaviour, is it possible to predict whether the synchroni-

sation mechanism is scalable? What is the minimum group size that presents

the interference problem? In this section, we try to answer these questions

exploiting the mathematical model introduced in Section 4.1.

We start from the observation that, if a synchronisation mechanism does not

scale with the group size R, there should exist an incoherent attractor in which

the system converges, alternative to the synchronous one. In other words, the

dynamical system (11) undergoes a bifurcation with varying parameter R, so

that two attractors are observable: the synchronous and the incoherent one.

In order to predict from the individual behaviour whether such a bifurcation

exists or not, it is necessary to understand the conditions for the existence of

an incoherent attractor.

In the previous section, we empirically observed that, whenever an evolved

synchronisation mechanism does not scale, robots perceive a fixed signalling

pattern, either continuous or alternate. In such a situation, the s-bots do not

receive information about the position and orientation of other robots: each s-bot
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broadcasts such information, which however gets lost due to the communicative

interference we discussed above. It is easy to prove that, given a fixed signalling

pattern s(t+1) = f(s(t)), no synchronisation is possible. If an s-bot, r, perceives

a fixed signalling pattern, its behaviour is not influenced by other s-bots, and

can be predicted as follows:











〈yr, θr, Sr〉|t+1 = Bc(yr, θr, s)|t

s|t+1 = f(s)|t

. (12)

It is therefore possible to study the above behaviour, and analyse possible

attractors—be they fixed points or limit cycles. If no attractor exists, s-bots

movements diverge and no synchronisation can be observed. If the attractors

exist and are fixed points, robots do not move in a synchronous manner because

they do not move at all. If the attractor is a limit cycle, the position on the

cycle only depends on the initial position of the robot, so that s-bots starting

from different initial positions will not synchronise.

In summary, if a fixed signalling pattern is perceived, s-bots cannot achieve

synchronisation. In other words, a fixed signalling pattern is a sufficient con-

dition for the existence of an incoherent attractor. As a consequence, artificial

evolution shaped the individual behaviours in order to avoid fixed signalling

patterns, and each evolved controller produces at least two different signalling

behaviours. However, the communicative interference highlighted before can

lead to the perception of a fixed signalling pattern which is self-sustained by

the group, even if each individual s-bot varies its own signalling behaviour.

By analysing the individual behaviour in equation (12) for the signalling pat-

terns produced by the same evolved controller,6 it is possible to define the

conditions for the existence of communicative interference, which corresponds

to the existence of an incoherent attractor. In particular, we claim that if equa-

6For a given controller, it is sufficient to consider the signalling pattern that subsumes
all other possible patterns. For instance, in c10, the continuous signalling pattern f(s) = 1
subsumes the alternate signalling f(s) = 1− s, so that the communicative interference can be
created only by the former.
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tion (12) presents attractors that are contained within the region of phase space

in which Sr|t+1 = f(s)|t—which we refer to as the non-interaction area—then

for a sufficiently large R the group can produce a fixed signalling pattern. As

a consequence, an incoherent attractor exists and the evolved synchronisation

mechanism is not scalable.

To prove the above claim, suppose that an s-bot perceives a fixed signalling

pattern f(s), which belongs to its repertoire of signalling behaviours. Its move-

ments are therefore described by equation (12). By hypothesis, the attractors

of this system are contained at least partially within the non-interaction area,

so that:

∃t : Sr|t+1 = BS
c
(yr, θr, f(s))|t = f(s)|t, (13)

where BS
c

indicates the component of Bc related to the production of the sig-

nal S. In other words, s-bot r produces the same signalling pattern f(s)

while traversing the non-interaction area. For a sufficiently large R, the self-

production of a fixed signalling pattern becomes possible:

∀t ∃r : Sr|t+1 = BS
c
(yr, θr, f(s))|t = f(s)|t, (14)

that is, at every instant t there is an s-bot r that contributes in producing the

signalling pattern.

To summarise, the analysis of the attractors of the individual behaviour

under the forced perception of a fixed signalling pattern reveals whether such

signalling patterns can be self-sustained by a sufficiently large group. If this is

the case, an incoherent attractor exists for the system in equation (11) and the

evolved behaviour does not scale. Otherwise, scalability is possible. The con-

trollers analysed in Section 4.2 produce both a scalable synchronisation mech-

anism, as observed in Figure 12. In fact, both present attractors for a fixed

signalling pattern that lie outside of the corresponding non-interaction area.

Controller c8 is characterised by a limit cycle attractor shown as a dotted line

in the bottom-right vector field of Figure 5, which is completely contained in
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the no-signalling area. Controller c10 presents two fixed point attractors, shown

as crosses in the bottom-right vector field of Figure 6, which lie outside of the

environment-driven signalling area.

To further prove our claims, we analysed the individual behaviour of the best

performing controller that does not present scalability, namely c13. The evolved

behaviour can be analysed with the 3D vector field of Figure 13 that shows the

individual behaviour under normal conditions. The right vector field in Fig-

ure 13 corresponds to the behaviour of the s-bot in presence of fixed continuous

signalling f(s) = 1. It is possible to notice that the limit cycle attractor for this

condition traverses the environment-driven signalling area. As a consequence,

with a sufficiently large number of s-bots the evolved synchronisation mechanism

does not scale, as can be seen in Figure 12. The bifurcation of the corresponding

dynamical system with the number of robots R is well represented in Figure 14.

Here, we measured the average standard deviation of the absolute value |y| in

100 trials for varying group size. The points in Figure 14 represent the average

value, and the black line represents the least square error fitting function. It is

possible to notice that for small R, only the synchronous attractor exists, and

the robots always achieve a zero standard deviation in the |y| position. For

larger group sizes, the incoherent attractor appears, and for R > 40 the system

always converges to the incoherent attractor. We can describe this situation

from a dynamical system perspective. With increasing group size, the system

undergoes a bifurcation, so that, on the one hand, the larger the group size R,

the larger the basin of the incoherent attractor, which becomes more and more

probable. On the other hand, the synchronous attractor does not disappear: if

robots start synchronised, they will keep synchrony for ever. However, the basin

of the synchronous attractor shrinks with increasing R, making it less probable

to observe the onset of synchronisation for large groups.

A further prediction from the mathematical model consists in the minimum

group size, Rm, for which the incoherent attractor exists. This group size de-

pends on the time each robot spends in the non-interaction area while moving
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over the limit cycle for the corresponding fixed signalling pattern. In fact, in or-

der to satisfy condition (14), it is necessary that while a robot moves within the

non-interaction area, another robot prepares to enter the non-interaction area.

In other words, Rm robots should be evenly spaced over the limit cycle so that,

when one s-bot exits the non-interaction area, another one enters it, therefore

sustaining the production of the fixed signalling pattern. As a consequence, the

minimum group size Rm is given by:

Rm =

⌈

T

Tn

⌉

, (15)

where T is the period of a single oscillation, and Tn is the fraction of this period

spent within the non-interaction area while moving on the limit cycle. For

controller c13, we experimentally obtained Rm = 6, which can be considered a

theoretical lower bound for the minimum group size. We actually observed the

existence of the incoherent attractor for a minimum group size of 9, as shown

in Figure 14.

A final remark about scalability concerns noisy conditions: in the presence

of environmental noise, the trajectories of the robots given by equation (12) may

oscillate around the attractors. In such conditions, the noisy trajectories may

fall into the non-interaction area even if the attractors do not lie within it, but

are sufficiently close. With a certain probability—depending on the group size,

the noise level and the vicinity of the attractors to the non-interaction area—the

system may converge towards an incoherent attractor caused by environmental

noise.

6 Tests with Physical Robots

So far, we have shown how artificial evolution can synthesise efficient and scal-

able synchronisation mechanisms which are based on minimal communication

strategies. In this section, we test the evolved behaviour with physical robots.

Such tests should be considered a proof-of-concept about the usage of evolution-
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ary techniques for the synthesis of swarm robotics controllers. Our main interest

is therefore testing to what extent the behaviours evolved in simulations transfer

to physical robots, and identifying the possible causes of failure.

For tests with physical robots, we chose controller c8, as it presents both a

high performance and good scalability properties. The neural network controller

is used on the physical s-bots exactly in the same way as in the simulations. The

sensor readings are taken every 100 ms, are scaled to the range [0,1] and finally

fed to the neural network. The outputs of the network are used to control the

wheels and the loudspeaker. Due to limited room, we reduced the x size of the

experimental arena to 3 m. Within the arena, we defined the initial positions of

the robots by tracing a grid of 11× 7 evenly spaced points, 25 cm distant from

each other. We initialised the robots by randomly choosing, without replace-

ment, the position within the grid and by choosing the orientation randomly

from 8 possible angles. In order to compute the performance of the evolved

solutions, we could not use the fitness function defined in Section 2.3, because

technical reasons prevented the use of an overhead camera to obtain a reliable

measure of the s-bots ’ position within the arena, necessary to compute both FM

and FS . Instead, we focused on synchronisation only and we used the percep-

tion of the ground sensors to estimate the position y over the gradient. Using

this estimate, we computed the average cross-correlation among the time series

recorded on the s-bots for each trial.

Using the above setup, we performed 20 trials with 2 s-bots, and 20 trials

with 3 s-bots.7 In order to make a fair comparison between the performance

of the physical robots and the one obtained in simulation, we performed an

equal number of trials in simulation, starting from identical initial positions in

an identical arena, and we computed the same performance measure that was

used for the tests with physical robots. The obtained results are plotted in

Figure 15. Tests with 2 robots present a fairly good performance in some trials,

with s-bots displaying the ability to achieve synchronised movements, to avoid

7Videos of the experiments with physical robots can be found at http://laral.istc.cnr.
it/esm/trianni-nolfi-ieeetec09.
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collisions and to recover synchrony. Other trials present lower performance: in

these cases, s-bots display a tendency to synchronise, which is however disrupted

by collision avoidance manoeuvres and by noise. Concerning tests with 3 s-bots,

a generalised reduction in performance with respect to simulation was observed.

Notice however that the simulated experiments also present a lower performance

if compared with tests performed with 2 robots. In fact, in reality as well as

in simulation, collision avoidance is more frequent due to the reduced size of

the experimental arena, and therefore synchrony is often disrupted by dodg-

ing manoeuvres. Additionally, we observed that in reality it takes longer than

in simulation to manoeuvre out of the collision condition. Finally, real-world

experiments have been conducted under severe conditions regarding ground sen-

sors’ noise. In fact, the treels of the s-bots continuously produce small bumps

that result in very noisy readings. We tested the effects of increased noise in

the simulations, and we found behavioural patterns similar to the real-world

scenario (data not shown). We consider this as an indication that, besides the

increased difficulty in manoeuvring out of a collision condition, the low perfor-

mance observed in reality should be ascribed to increased noise in the ground

sensors.

7 Conclusion

Much like natural evolution produced swarms of fireflies able to self-organise

to achieve coherent group behaviour, artificial evolution can synthesise self-

organising swarms of robots that accomplish complex tasks. In this respect,

swarm intelligence can benefit from the study and analysis of natural as well

as artificial systems: in both cases, a deep understanding of the dynamics that

govern the individual behaviour and the social interactions can underpin novel

developments in the engineering of swarm intelligent systems. In this paper, we

have presented an artificial evolutionary process designed to shape the behaviour

of a robot system to display self-organised synchronisation. We have also shown
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how the dynamical system analysis can explain the evolved mechanisms and

predict the behaviour of the robot system for varying group size. We believe

that this analysis can bring useful insights on how to build—through automatic

techniques or hand-design—swarm robotics systems that are capable of self-

organised synchronisation and that scale to a large number of robots. In fact,

we have given a clear description of the building blocks necessary to produce

synchronised behaviours, and most importantly we have decoded the individual

behaviour to find the conditions that allow the system as a whole to synchronise,

independent of the group size.

Concerning the generality of the proposed approach, it is important to no-

tice that the dynamical system analysis performed in this work depends neither

on the type of controller nor on the methodology used to design it. In fact, the

mathematical model introduced in Section 4.1 treats the controller as a black

box, while the design methodology is not even considered. The only knowledge

about the controller we exploited refers to the absence of internal states. Oth-

erwise, we simply identified the state variables of the system and made all the

simplifications necessary to perform the numerical analysis. Therefore, similar

dynamical models could be developed for different experimental settings and

different swarm robotics contexts, for simulated or physical robots, in order to

uncover the mechanisms that lead to certain group behaviour, and possibly to

predict emergent features of the system, much like we did with the scalability

analysis presented in Section 5.3.

The synthesis of collective, coordinated behaviours in physical robots is not

a trivial enterprise. In fact, due to the indirect relationship between simple

local rules and the system’s global properties, the definition of the individual

behaviours is particularly challenging [55]. The results presented in this pa-

per support the use of evolutionary robotics techniques for the development of

self-organising behaviours. The evolved behaviours feature high efficiency and

scalability properties, and have been positively tested with physical robots. To

obtain these results, we adopted a minimal approach that does not postulate
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the need of internal dynamics for the robots to be able to synchronise. Instead,

we stress the importance of the dynamical coupling between robots and environ-

ment. Robots can be described as embodied oscillators, their behaviour being

characterised by a period and a phase. In this perspective, the movements of an

s-bot correspond to advancements of the oscillation phase. Robots can modulate

their oscillations simply by moving in the environment and by modifying their

dynamical relationship with it. Such modulations are brought forth in response

to the perceived communication signals, which also depend on the dynamical

relationship between the s-bot and the environment. In this way, simple and

reactive behavioural and communication strategies are sufficient to implement

effective synchronisation mechanisms. We have also analysed the scalability of

the evolved controllers, showing that synchronisation can be obtained in large

groups, even though large groups were never tested during the evolutionary opti-

misation (controllers were evolved always using three s-bots). We observed that

physical or communicative interferences may prevent the system from synchro-

nising. This is a consequence of the global and binary communication channel

we used, which results in an excessive influence of the signal emitted by any

single individual on the dynamics of the whole group. Better results may be

achieved exploiting a local and additive communication, which ensures that only

the signals emitted by neighbours would be taken into account and that the

number of contemporary signalling robots is relevant. We will account for this

possibility in future work. Another interesting issue to study in future develop-

ments is to provide evolving robots with the possibility to discriminate between

self-produced and external signals. Such an ability may be based either on

an additional sensory channel that detects only the self-produced signal, or on

the internal dynamics of the neural controller, which could evolve some neural

mechanism similar to the corollary discharge observed in some insects [56].

By looking at the evolved behaviours, we recognised two different strategies.

The analysis of their dynamics indicates that the two strategies are based on

the same general mechanism: the tendency of the robots to move towards the
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attractor that corresponds to a certain signalling pattern—continuous or alter-

nate. The difference between the two strategies can be recognised in the type of

attractors: the one based on the so-called modulation mechanism features a limit

cycle attractor, while the one based on the reset mechanism is characterised by

fixed point attractors. Similar mechanisms are also observed in biological oscil-

lators. For instance, different species of fireflies present different synchronisation

mechanisms, based on delayed or advanced phase responses [4,5,18]. Moreover,

our results seem to be in accordance with the precedence effect explanation of

chorusing, for which synchronous signalling evolved as a result of the attempt

of each individual to anticipate the signal of its neighbours [30]. In future work,

we plan to extract further results from the analytical model, in order to uncover

the details about the evolved synchronisation mechanisms and further study our

artificial system in comparison with biological examples.

In conclusion, we believe that studies about synchronisation such as the one

presented in this paper, notwithstanding the explicitly simplified experimental

setup, can have a strong impact on future studies in swarm robotics. In our

work, robots oscillate by exploiting environmental cues, and synchronise on the

basis of communication only. We can imagine a swarm robotics system in which

each individual robot behaves according to the environmental contingencies it

experiences, and in parallel synchronises with other robots creating assemblies

of coherent activity that lead to the achievement of a collective goal. We used

the term assembly, commonly found in cognitive neurosciences [6, 9], not ac-

cidentally: much like neurons in the brain synchronise to bring forth complex

cognitive functions, robots that synchronise are dynamically coupled and can

form groups performing coordinated, cooperative activities. The synchronised

robots collectively identify themselves as a cooperative unit and potentially dif-

ferentiate from other units—either behaviourally or physically through a self-

assembling process [51]. Such differentiation is brought forth on the basis of

the environmental contingencies experienced by the robots, and on the basis

of communicative interactions. In this way, we can imagine that, in a swarm

38



robotics system, allocation of roles and tasks arises as a result of the dynamical

coupling among robots and between robots and the environment.
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Figure 1: Snapshot of a simulation showing three robots in the experimental
arena. The dashed lines indicate the reference frame used in the experiments.
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Figure 2: An example of synchronised motion of three robots. The y position
of the robots is plotted against time.
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Figure 3: View of the s-bot from different sides. The main components are
indicated (see text for more detail).
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Figure 4: Post-evaluation results of the best evolved controllers ci in each evolu-
tionary experiment i = 1, .., 20. The performance is represented on the horizon-
tal axis, and the controller number on the vertical axis. The boxplot displays the
whole dataset: each box represents the inter-quartile range of the data, while the
black vertical line inside the box marks the median value. The whiskers extend
to the most extreme data points within 1.5 times the inter-quartile range from
the box. The empty circles mark the outliers. Data from different controllers
are sorted according to the median value. Moreover, statistical similarities are
represented as vertical bars spanning over the controller numbers (see text for
detail).
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Figure 5: Individual behaviour produced by controller c8. Top-Left: 3D vector
field showing the direction of variation and its magnitude for each point in
the phase space. The θ dimension is characterised by 2π-periodic boundary
conditions. The continuous line represents the limit cycle attractor. Top-Right:
signalling behaviour of the controller for each position and orientation (see text
for detail). The continuous line represents a projection of the limit cycle on the
y θ plane: a black line colour indicates that the trajectory belongs to plane s = 0,
while the grey colour corresponds to the portion of trajectory that belongs to
plane s = 1. Bottom-Left/Right: projection on the y θ plane of the vector fields
for a perceived signal s = 0 and s = 1. The dotted line in the bottom-right
vector field represents the limit cycle for a continuous perceived signal forced to
1, despite the individual behaviour.
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Figure 6: Individual behaviour produced by controller c10. See the caption of
Figure 5 for detail. Notice that the bottom-left plot is a vector field given by
the average between the vector fields for s = 0 and s = 1, as it represents the
average direction of movement during alternate signalling. In the bottom-left
plot, the dotted line indicates the limit cycle attractor for a perceived signal
forced alternate. In the bottom-right plot, the crosses indicate the fixed point
attractors for a continuous perceived signal forced to 1, despite the individual
behaviour.
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Figure 7: Synchronisation behaviour of controller c8. Top: the position y of
two s-bots that synchronise is plotted through time. The grey bands in the
background indicate that a signal is being perceived. Centre and bottom: vector
fields for the conditions s = 0 (left) and s = 1 (right). For each point, the
individual signalling behaviour is displayed as a dot with varying grey level (see
also Figure 5). The trajectories of the two synchronising robots are shown, and
relevant events are marked with capital letters. The same letters indicate the
time of the corresponding events in the top graph.
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Figure 8: Top: Definition of the perturbation phase φ from the time delay
between the signal of the free-running oscillator and the perturbation signal.
Positive values correspond to a delayed signal, while negative values correspond
to an anticipated signal. Bottom: Normalised phase response curve (PRC) for
controller c8.
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Figure 9: Synchronisation behaviour of controller c10. Top: the position y of
two s-bots that synchronise is plotted through time. The solid grey bands in the
background indicate that a continuous signal is being perceived. The striped
grey bands indicate an alternate signal. Centre and bottom: vector fields for
the continuous signalling (left) and alternate signalling (right, see also Figure 6).
For each point, the individual signalling behaviour is displayed as a filled circle
with varying grey level. The trajectories of the two synchronising robots are
shown, and relevant events are marked with capital letters. The same letters
indicate the time of the corresponding events in the top graph.
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Figure 10: Top: Definition of the perturbation phase φ from the time delay
between the signal of the free-running oscillator and the perturbation signal.
Bottom: Phase response curve for the controller c10.
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Figure 11: Scalability analysis. The boxplot shows, for each evolved controller,
the performance obtained in tests with 3, 6, 12, 24, 48, and 96 s-bots. Each
box represents the inter-quartile range of the data, while the black horizontal
line inside the box marks the median value. The whiskers extend to the most
extreme data points within 1.5 times the inter-quartile range from the box.
Outliers are not shown.
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Figure 12: Scalability of the synchronisation mechanism. See the caption of
Figure 11 for detail.
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Figure 13: Individual behaviour of controller c13. Left: the 3D vector field shows
for each point in the phase space the direction of variation and its magnitude.
Right: projection on the y θ plane of the vector field for a constant perceived
signal s = 1. The black line represent the limit cycle for this condition. The
black dots represent the non-interaction area.
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Figure 14: Average standard deviation of the absolute value of the yr position
for each s-bot r, plotted varying the group size R from 1 to 100. The black line
represents a curve that fits the experimental data.
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Figure 15: Comparison between the performance obtained in simulation and
with physical robots.
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