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Abstract— We study a situation where a swarm of robots
is deployed to solve multiple concurrent tasks in a confined
arena. The tasks are announced by dedicated robots at
different locations in the arena. Each task requires a certain
number of robots to attend to it simultaneously. We address
the problem of task allocation: how can the robots of the
swarm assign themselves to one of the announced tasks
in a distributed and efficient way? We propose two novel
methods: one relies on simple reactive mechanisms that
are based on interaction through light signals, while the
other uses a more advanced gossip-based communication
scheme to announce task requirements among the robots.
We evaluate both methods, and compare their performance.
We also address scalability and robustness issues, in order to
understand the usefulness of the methods in different swarm
deployment conditions.

I. INTRODUCTION

Swarm robotics is a form of collective robotics that takes
its inspiration from social insects, such as colonies of ants,
and from the related notion of swarm intelligence [20].
The central concept is to use large numbers of identical
robots that individually have rather limited capabilities but
when combined as a group are able to generate more
complex behavior [18]. Swarm robotic systems work in a
decentralized way and use only local control and commu-
nication. Typical properties of such systems are scalability,
since the system can be extended to very large numbers of
robots, flexibility, since robots can be dynamically added
and removed, and fault tolerance, since individual robots
are usually unimportant for the working of the system and
there is no central point of failure [15].

In this paper, we address a problem of task allocation
for robotic swarms. We consider a situation where a swarm
of robots is deployed in a confined arena. Tasks appear at
different locations in the arena and each task needs to be
served by a certain number of robots simultaneously. The
robots need to decide which task each of them will go to.
The question we address is how this can be done efficiently
in a distributed way, using only local communication.

We develop two mechanisms to deal with this problem.
The first takes a very simple reactive approach. It is based
on communication through light signals, whereby robots
are attracted to one color of light and repulsed from
another, in combination with random movements. The
second mechanism is based on the explicit communication
of structured information. When a task is announced,
the number of robots it needs is communicated. This
information is then passed on between the robots using
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a gossip mechanism, so that also robots further away can
learn about it and react to it. In an evaluation study, we
compare both mechanisms in terms of their efficiency, and
we also investigate issues of scalability and robustness to
communication failures.

In what follows, we first give a more detailed description
of the problem we are addressing, and then discuss the
related work in this area. Next, we describe the two
task allocation mechanisms we propose. After that, we
evaluate and compare the two systems. Finally, we draw
conclusions and describe future work.

II. PROBLEM DESCRIPTION

The task allocation problem described here is situated in
the broader context of a search task performed by a hetero-
geneous swarm consisting of two types of robots (this can
also be seen as two separate swarms that collaborate). The
first type are flying robots. They are called Eyebots. The
second type are robots that move over the ground. They
are called Footbots. Both types of robots are developed
in the context of the EU-funded Swarmanoid project on
heterogeneous swarm robotics [1], [2]. Images of these
robots are shown in Figure 1. Within the Swarmanoid
project, also a third type of robots is developed, the
Handbots, which are left out of the discussion here to
clarify the setup. In future work, they will perform part of
the work that is here assumed to be done by the Footbots.

In the search task presented here, the heterogeneous
swarm is requested to retrieve a particular target object
from a room. To complete the task, the two types of robots

(a)

(b)
Fig. 1. Swarmanoid robots: (a) the Footbot (CAD draw) and (b) the
Eyebot (prototype).



cooperate. The flying Eyebots execute a high-level search,
obtaining an overview of the room and identifying areas
where the target object might be found (e.g., if the target
object is a specific book, the Eyebots identify parts of the
room where books are present). The Footbots then visit
these areas of interest in order to execute a detailed search
for the specific target object. This comes down to a two-
level search procedure.

From the Footbots’ point of view, the areas of interest
indicated by the Eyebots are tasks that are announced
at different locations in the environment. Here we are
interested in the way the Eyebots announce the tasks and
the way the Footbots react to this in order to get an efficient
spreading of the Footbots over the tasks. The problem
we address starts with a simultaneous announcement of
multiple tasks by Eyebots at different locations in the
arena, and finishes when all Eyebots have gathered enough
Footbots around them to complete the local task.

III. RELATED WORK

A large number of strategies exist to solve task allocation
problems in multi-robot systems. This is partly due to the
high number of possible variations of the problem. An
effort to formulate a taxonomy for existing task allocation
problems was presented in [9]. According to this taxon-
omy, our work can be classified as a “single-task robots,
multi-robot tasks, instantaneous assignment” problem.

One of the most popular approaches to deal with task
allocation problems is the market based strategy (see [8]
for an overview). In such a system, an auctioneer an-
nounces tasks, and robots make bids, indicating their cost
or utility to deal with the tasks. Based on the different bids,
the auctioneer then decides which robot will be assigned
to which task. Market based task allocation combines
the efficiency of a centralized approach (the auctioneer
decides with overview of the situation) with advantages
of distributed approaches (much of the calculation is done
by the individual robots preparing their bids) [8].

For swarm robotics, market based systems are not al-
ways the most appropriate approach. This is because they
use the auctioneer as a central decision maker, use an
explicit assignment of individuals to jobs, and need some
form of global or at least long distance communication. All
of these elements reduce the scalability and robustness of
the system, and conflict with the distributed and purely lo-
cal way of working of the swarm paradigm (even though an
auction-based system can still be the most efficient [11]).

Instead, the most commonly used task allocation strate-
gies in swarm robotics are threshold based systems. These
systems are based on observations of task or role allocation
processes in social insects, whereby tasks, often implicitly,
send out a signal, and the insects/robots react to this signal
if it surpasses an internal threshold. Due to differences in
this threshold among individuals, task allocation emerges
in proportion to the task’s signal intensity [12]. In [6],
a variation of this mechanism is presented whereby all
robots have the same threshold and the differentiation
comes from the variability in the local observation of the
signal intensity by the individuals. Several works address
the issue of dynamically adapting the internal threshold,
e.g. according to the estimated job density [5], according

to the own past success rate for the task [13], or according
to a combination of internal, external and social cues [14].
Other work combines this system with other methods for
more complex task allocation [22].

Some of the work on task allocation in swarm robotics
diverges from this threshold based mechanism. E.g.,
in [10], robots adapt their own task allocation based on
the observed density of tasks and robots addressing them.
In [16], the required target distribution of robots over tasks
is known by all robots, and the authors investigate different
strategies to get to this distribution, evaluating the amount
of communication that is used in each one.

The work presented here is somehow naturally related
to auction based systems, as the Eyebots announcing the
tasks play a central role and could easily function as
auctioneers. However, since we are interested in designing
a task allocation method for a swarm robotic system, we
want to avoid the bidding and explicit task assignment
applied in auction approaches.

IV. TWO TASK ALLOCATION METHODS

In this section we describe the two task allocation
methods we developed for swarm robotic systems. First
we present the approach that uses light-based interaction,
and next we describe the approach that is based on the
exchange of structured information through gossiping. We
assume that the Eyebots come down to ground level to
announce the tasks to the Footbots.

A. Light-based task allocation
In the light-based task allocation system, Eyebots (and

Footbots) use the multi-colored LEDs that are placed in a
ring around their body [2] to influence Footbot behavior.
The Footbots use their omnidirectional camera [2] to detect
lights and react to them. The light-based task allocation
system is built up around four basic behaviors:

• Attraction to yellow light. Footbots are attracted to
yellow lights. When they see yellow lights in more
than one direction, they go to the closest (they can
estimate distance since it relates to vertical position
in the field of view of the omnidirectional camera).
Eyebots use yellow lights to attract Footbots to a task,
as is shown in Figure 2(a). The number of yellow
lights they use is proportional to the task size.

• Repulsion from green light. Footbots are repulsed
from green lights: when they see green lights in the
direction they are moving in, they turn away from it.
In contrast to the attraction to yellow lights, repulsion
is only active at a limited distance (set to about 50cm),
so that the combination of a yellow and a green light
attracts a Footbot up to a certain distance, after which
the Footbot turns away. The repulsion behavior is used
in two different ways. First, Eyebots show green lights
in addition to the yellow lights, in order to control
better the total number of Footbots they attract. This
is shown in Figure 2(b). Second, Footbots that are
attracted by yellow lights show green lights around,
in order to repulse other Footbots from the tasks they
are going to. This also limits the number of robots
that come to serve a specific task. Moreover, it makes
the Footbots that arrive at a task spread out. This is
illustrated in Figure 2(c).



• Internal frustration. Each Footbot keeps an internal
frustration level. This goes up whenever the Footbot
experiences at the same time attraction and repulsion
(as in the situation of Figure 2(c)), and goes down (but
at a slower rate) when there is no repulsion. When
the frustration reaches a fixed threshold, the Footbot
executes an escape movement. This comes down to
turning away from the direction in which attraction is
observed and moving forward for a certain distance
(enough to get outside the view of the attraction).
This makes Footbots move away from events (points
of attraction) that are being served by other robots
(points of repulsion) and try other parts of the arena
to find other tasks. The frustration mechanism is
related to the internal motivations used in the Alliance
architecture [17].

• Random movements. When none of the other three
behaviors is active, the Footbots make random move-
ments. These consist of turning in place for a random
amount of time, and then moving forward for a
random amount of time. This makes the Footbots
execute a random search of the arena to find tasks.

The combination of these basic behaviors leads to a
spreading of the Footbots over the different tasks, propor-
tionally to the size of the tasks announced. An example
is given in Figure 3, where the areas to be searched are
bookshelves of different sizes. The three Eyebots indicate
1, 4 and 8 attracting lights respectively, attracting different
numbers of Footbots. Note that the final number of Foot-
bots is not necessarily exactly the same as the number of
attracting lights: this number depends on the strength of
the repulsion between the Footbots.

B. Gossip-based task allocation

The gossip-based task allocation system makes use of
the infrared range and bearing (Ir-RB) module which
is present on each Footbot and Eyebot [4]. This is an
adaptation of the system presented in [19]. It consist of 26
infrared emitters and 16 receivers, placed all around the
robot. Based on the quality of received signals, the system
calculates an estimate of the relative bearing and range to
other robots using the same system. The maximum range is
3 meters, and the precision is 20% for range estimates and
30 degrees for bearing estimates. The system also allows
line-of-sight communication over the infrared signal with
a nominal bandwidth of 40 Kbps. The advantage of this
system is that received data can be related to information
about the relative position of their sender.

The Eyebots use the Ir-RB system to send task an-
nouncement messages, in which they indicate the number
of robots needed to complete the task. If they perceive
Footbots nearby, they reduce this number. These task an-
nouncement messages are then forwarded by the Footbots
and the other Eyebots in a gossiped way, i.e. each time
they meet new neighbors, so that information about all
tasks spreads among the swarm.

Each gossiped message contains information about all
tasks a robot knows about. In detail, the following infor-
mation is transmitted:

• Robot ID. The ID of the transmitting robot.

(a)

(b)

(c)

(d)
Fig. 2. Overview of the behaviors in the light-based task allocation
mechanism: (a) attraction to yellow light, (b) repulsion from green light
to get more precise placement, (c) repulsion from green light to fend
off other robots, (d) evasive behavior when the frustration threshold is
reached. In these figures, the color of the Footbot body illustrates its
internal state: dark green means that it feels attraction, light green means
repulsion, red means frustration, and black means that the Footbot is in
place to perform the task. Yellow arrows show the movement direction
of selected robots.



(a)

(b)
Fig. 3. An example of a task allocation scenario, (a) at the moment tasks
are announced and (b) at the moment sufficient Footbots are assigned.

• Number of tasks. The number of tasks which the
sender has received information about.

• For each task:
– Task ID. This corresponds to the ID of the Eyebot

announcing the task.
– Required workers. The number of robots the task

requires.
– Hops. The number of hops (in terms of commu-

nication) to the task.
– Route length. The distance to the task following

the hops.
– Age. The age of the information about the task.

When a robot receives information about a task, it needs
to recalculate most of it before it can forward it in a
message of its own. The number of required workers is
decreased if the robot itself decides to go towards this
task. The number of hops is increased by 1. The route
length is increased by the distance to the robot the message
was received from. Finally, the age value is increased. If
the task age exceeds a threshold the task information is
discarded and not re-sent in the next time-step.

The information about the tasks is used by the Footbots
to decide on their actions. In general, the Footbot has four
different behaviors:

• Attraction to next task hop. The nearest task is defined
using the number of hops as first criterion and the
route length as second criterion. The attraction of the
task is only active when the number of additionally
required robots for this task is greater than 0. The
robot goes towards the next hop of the task (i.e., the
robot it received the task information from), using the
bearing information from the Ir-RB system. It steers
on a circular path around the robot when it is close

to it, until it sees the following hop. The reason to go
hop by hop rather than straight to the task is to find
obstacle free paths (since the Ir-RB communication
only works over line-of-sight).

• Internal frustration. The robot has an internal frus-
tration level value for each known task. This level
increases with its distance to the task and with the
number of robots that are near the task. The frustration
decreases each time step with a small amount. When
the frustration for a task passes a certain threshold,
the robot will not go to this task.

• Random movements. This behavior is active when the
robot does not know any task to go to (i.e., it knows
only tasks that have enough robots or which it has
a high frustration level for). The robot steers to a
random position in its surrounding area. When the
robot reaches this position or detects an obstacle on
its way, another random position is generated.

• Obstacle avoidance. The obstacle information is
based on proximity sensor values. When an obstacle
is detected, a motion force in the opposite direction
of the obstacle is added to the intended movement of
the robot. When the robot is very close to the task
itself the obstacle avoidance behavior is suppressed
to stabilize already aggregated robots to tasks.

Compared to the light-based system described in Sub-
section IV-A, the gossip-based task allocation system is
a bit more complex, as it requires the exchange and
processing of structured information. However, unlike a
market-based system (see section III) the task allocation
is still entirely based on autonomous decisions of the
individual robots, and no explicit assignment of robots to
tasks is needed. An advantage compared to the light-based
system is that information about tasks is disseminated over
larger distances. Moreover, the fact that we use gossiping
entails that the information can spread over the network
of robots using only local message exchanges, without
the need for full connectivity at any time. This way,
information is flowing opportunistically between robots,
which is an important advantage in sparse networks [23].

V. EVALUATIONS AND COMPARISONS

In the following we evaluate and compare the two
task allocation methods. All tests are done using the
Swarmanoid simulator [3], which uses the Open Dynamics
Engine library [21] for the calculation of the physical
movements and collisions of the robots and their environ-
ment, and the OpenGL library [7] for visualization.

We carried out experiments using three different setups,
as shown in Figure 4: (a) an open environment (room size
6× 10m2), (b) an environment with obstacles (room size
6×10m2), and (c) a maze (room size 9×9m2). In setups (a)
and (b), there are three Eyebots announcing tasks, whereby
one task requires one Footbot, the second three, and the last
five. In setup (c) there are two Eyebots announcing tasks,
one of which requires four Footbots, and the other five.
We carry out tests with increasing numbers of Footbots in
the room: from 10 up to 40.

In the first place we are interested in efficiency: how
quickly can the different task allocation systems assign
the correct number of robots to each task. Figure 5
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Fig. 4. The three different test setups we used: (a) an open environment,
(b) an environment with obstacles and (c) a maze.

shows the time needed to reach the desired configuration
in each of the three setups, with error bars indicating
a 90% confidence interval. In all three setups, and for
both algorithms, the performance improves with increasing
numbers of Footbots, as more robots are available to serve
the different tasks. A number of 20 robots or more seems to
guarantee good performance in all setups, while especially
in the maze setup performance suffers considerably for
lower numbers of robots. In general we can see that the
gossip-based task allocation method gives better results
than the light-based approach: the presence of structured
information propagated between the robots allows to make
better decisions. The difference between the two methods
decreases with an increasing number of Footbots though,
and becomes insignificant for 20 robots or higher both in
the open and the cluttered environment.

Despite its good performance, the gossip-based task
allocation method has an important drawback compared
to the light-based method: it requires the use of wireless
communication in order to exchange information. Different
from light signals, wireless packet transmission over the

(a)

(b)

(c)
Fig. 5. The time needed to obtain the required allocation of robots to
tasks in the three different setups, with increasing numbers of robots.
Error bars show a 90% confidence interval using a t-test.

Ir-RB system may fail due to interference with other
transmissions or with other infrared signals in general
(e.g., signals produced by distance and proximity sensors).
Interference increases with growing numbers of robots, and
hence limits the scalability of the system.

Precise evaluations of the level of interference are not
possible through our simulation system, and will therefore
be addressed in later tests on the real robots. Here, we focus
on the effect that the loss of communication packets has on
the performance of the system, i.e. how robust the gossip-
based system is with respect to packet loss. Figure 6(a)
shows the bandwidth consumption per robot for the setup
of Figure 4(b) with 15 Footbots, when only a fraction of
the scheduled messages are sent (fraction 1 means 1 packet
every control step of 100ms, while fraction 0.01 means 1
packet per 10 seconds). While these levels of bandwidth
can nominally be supported by the Ir-RB system, it is
expected that competition for the wireless channel and the



(a)

(b)
Fig. 6. For the setup of Figure 4(b) with 15 Footbots, (a) the bandwidth
consumption and (b) the time required to obtain correct task allocation,
when only a fraction of the messages are sent (e.g., 0.5 means that 50%
of the scheduled messages are sent). The performance of the light-based
approach in the same setup is also shown.

lack of centrally controlled medium access control will
lead to packet loss even for a relatively low number of
robots. Figure 4(b) shows the performance of the gossip-
based system when only a fraction of the packets are sent.
As can be seen, the performance suffers considerably when
less than 25% of the messages are sent. At that point, the
light-based approach becomes preferable.

In summary, the gossip-based approach works better
than the light-based approach when the density of robots is
low and operating conditions are good. However, it scores
less good for scalability and robustness to communication
failures, which are important issues in swarm robotics.
Further tests on the real system have to indicate how severe
these problems can be.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have described two task allocation
mechanisms for swarm robotic systems. The first is based
on light signalling between robots, while the other relies
on the gossiped exchange of structured information about
tasks. Neither of the algorithms applies an explicit allo-
cation of specific robots to tasks. In comparison tests, we
found that the gossip-based algorithm is more efficient than
the light-based algorithm in highly cluttered environments
or when the total number of robots is low, while the
difference between the algorithms is insignificant when
more robots are deployed and the environment is not too
complex. We also found that the gossip-based approach
has limited robustness to packet loss and may therefore be

less scalable. As a consequence, the light-based approach
might be more appealing in large swarm robotic systems.

In future work we will complement the results we
got via simulation with tests using the real Swarmanoid
robots, in which we will explicitly investigate issues of
interference, robustness to packet loss and scalability. Also,
we want to investigate how to integrate the two different
task allocation methods, so that the swarm can switch
between them according to the deployment scenario, and
get the best of both systems. Finally, we want to extend
these mechanisms to the full Swarmanoid system, which
means including the third kind of robot, the Handbot.
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