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Abstract: In this paper we study a problem of navigation in networked multi-robot systems.
The robots are deployed in a confined area, where they move around and solve tasks. They
communicate with each other through an infrared communication device, so that an ad hoc
network is formed among them. Due to the limited range and line of sight nature of the infrared
communication, this network has intermittent connectivity. The question we address is how a
particular robot can use this network to find a target location that is indicated by another
robot (e.g., the other robot has identified a task to be serviced by the searching robot). All
other robots are involved in tasks of their own, and do not change their movements to help the
searching robot find its destination. However, they do offer support by forwarding messages over
the network. We propose a new algorithm based on routing in ad hoc and delay tolerant networks
that can run on the network formed between the robots and provide navigation information to
the searching robot. We evaluate the validity of our approach both in simulation and through
an implementation on a group of 16 e-puck robots.
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1. INTRODUCTION

We address a problem of navigation in a networked multi-
robot system deployed in a confined area. We study
a situation where a robot A needs to find a location
indicated by another robot B. This might for example
occur when robot B has found a task that needs to
be serviced at a given location, and robot A is idle
and possesses the capacities needed to deal with the
task. We assume that all other robots are busy with
tasks of their own and do not alter their movements
in order to help robot A with its navigation problem.
They do however offer support through communication,
by forwarding messages and gathering information over
the network formed between the robots.

Communication between the robots takes place using an
infrared range and bearing system (IrRB) (Pugh and Mar-
tinoli (2006); Gutiérrez et al. (2008)). This system consists
of a number of infrared emitters and receivers placed all
around the robot. It is able to transmit small amounts of
data over short distances, as well as to estimate the relative
range and bearing of the robots it is receiving data from.
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Precise data about the performance and precision of this
system depends on its implementation and is discussed in
sections 4 and 5. Using the IrRB system, the robots form
a mobile ad hoc network among them. Due to the limited
range and the line-of-sight nature of the communication
device, connectivity is expected to be very intermittent.
Especially in cases of sparse robot density or deployment in
cluttered environments, the impossibility to establish end-
to-end paths will be the norm rather than the exception.
Therefore, algorithms and applications running on the
network need to be delay tolerant (Fall (2003)).

In this paper we propose an algorithm that uses the
communication network to gather information to support
the navigation of individual robots to their target. The
algorithm is inspired by ad hoc network routing protocols,
but is adapted to work as a delay tolerant application in
the intermittently connected network between the mobile
robots: navigation information can travel both through
telecommunication and through physical transportation
on board of moving robots. The ability of the IrRB sys-
tem to couple the reception of each data packet to rel-
ative location information about the sender allows us to
link routing data to geographical navigation information.
Moreover, the fact that infrared communication is only
possible within direct line-of-sight ensures that communi-
cation links correspond to obstacle free paths for robots.
The main novelty in this paper is that we offer a practical
approach that allows mobile robots to assist each other
in navigation while pursuing different goals and without



having to adapt their own movements. The fact that we
explicitly account for intermittent connectivity of the net-
work allows to deploy the system with a relatively low
robot density or in complex environments (where line-of-
sight communication is frequently blocked by obstacles).

The rest of this paper is organized as follows. First, we
describe the related literature that is most relevant to
our work. Then, we give a detailed description of our
navigation algorithm. Next, we present some results from
tests we carried out in simulation, and after that we
describe some tests that we ran with real robots.

2. RELATED WORK

A number of publications have addressed the topic of
communication aided robot navigation. The simplest form
of such systems is one where a single moving robot is
guided by a network of static nodes. These static nodes can
be deployed by the robot itself, as in Batalin and Sukhatme
(2003), or by an independent process, as in O’Hara and
Balch (2004) (and later papers by the same authors).
Localization can be done via GPS (Corke et al. (2003)),
or through hop count and/or signal strength measures
(O’Hara and Balch (2004); Witkowski et al. (2008)). Other
approaches use a combination of mobile and static nodes.
E.g., Sit et al. (2007) let mobile robots move to areas of
low connectivity in the network of static nodes. Finally,
other systems rely entirely on moving robots, which is
the case most similar to our work. In Park et al. (2008)
each robot makes a map of its local environment, and
communicates it with other robots using multi-hop com-
munication over a mobile ad hoc network. In Witkowski
et al. (2008) mobile robots spread over an area and then
choose fixed positions where they serve as beacons that
form a communication network and support tasks such
as search, localization and navigation. In Nouyan and
Dorigo (2006), a swarm intelligence approach is proposed,
whereby mobile robots physically form a chain to guide
another robot towards a goal using visual cues. Payton
et al. (2001) presents pheromone robotics, whereby robots
spread out over an area and indicate the direction to a
goal robot using infrared communication. Compared to
the previously described approaches, this work is more
closely related to ours. However, it requires robots to
adapt their movements to cooperate in the search and
does not have support to deal with intermittent connec-
tivity. O’Hara (2003) presents an approach similar to the
previous. In Sgorbissa and Arkin (2003) communication
is used for local navigation: a robot is required to go to
a sequence of goal locations and one or more explorer
robots move around to help it using line-of-sight commu-
nications. Different from our system, this work requires
robots that are dedicated to support navigation (“explorer
robots”). Moreover, the authors only present results for
relatively small groups of robots (one searcher and up
to three supporting robots), and only in simulation. Fi-
nally, in Ducatelle et al. (2008) we have presented a robot
navigation system based on an adaptive ad hoc routing
algorithm. That approach has similar properties as the
one presented here, but uses end-to-end paths between the
searcher and the target robot (the higher the frequency
paths can be established, the more effective the algorithm
is), so it is difficult to use in cluttered environments or with

a low density of robots. Moreover, the system presented
here is simpler and requires less bandwidth, so that it
can easily be implemented in robotic systems with limited
capacities and communication bandwidth (such as the e-
puck robots and their low bandwidth IrRB system that we
used in our experiments; see section 5).

3. THE ROBOT NAVIGATION ALGORITHM

We use an ad hoc network routing algorithm to support
robot navigation. Since communication goes over the IrRB
system, distance information is available for each link
in the network, and the routing algorithm can therefore
search the path with the shortest physical travel distance
to the destination. Our routing algorithm is based on
Bellman-Ford routing (Bellman (1958)): each robot pe-
riodically broadcasts to its neighbors the best distance
estimate it has available to each target robot, and a robot
receiving an estimate from a neighbor adds to it the
distance between itself and the neighbor to obtain its own
distance estimate for the target. All distance estimates are
labeled with a sequence number given out by the target
robot, as is done in some ad hoc routing protocols (e.g.,
DSDV by Perkins and Bhagwat (1994) and AODV by
Perkins and Royer (1999)). This allows to distinguish old
from new information. Also, we provide mechanisms to
deal with intermittent network connectivity: robots adapt
their distance estimates as they move according to their
odometry, so that estimates remain valid also when lack
of network connectivity prevents the reception of new
updates. In what follows, we describe the working of our
navigation system in detail.

Tables and messages

Each robot maintains two tables: a routing table and a
neighbor table. The routing table has one entry per target
robot. Each entry contains three values: the target’s id, a
distance estimate, and a sequence number indicating the
recency of the information. The information in this table
is broadcast in periodic update messages (sent every 2 sec-
onds in our experiments). Each update message contains
also the id of the broadcasting robot. The neighbor table
has one entry for each neighbor, i.e. for each robot a mes-
sage was recently received from. Here, an entry contains
the neighbor’s id, a distance, a direction and a timestamp
indicating when the last message was received from this
neighbor. The distance and direction are obtained from
the IrRB system at the reception of each message. The
neighbor table is frequently checked to eliminate neighbors
that have not been heard in a while (more than 2 update
message periods).

Route requests

When a robot needs to find a target, it adds an entry to
its routing table with the id of the target and sequence
number 0 and distance 0. From then on, each periodic
update message it sends out contains this entry. The
sequence number 0 indicates that the entry is in fact
a request towards the other robots to start gathering
information. Robots receiving the request add it to their
own routing table (without changing the sequence number



or the distance) and forward it in subsequent periodic
update messages. When the request finally reaches the
target robot, also this one will add it in its routing table.
The only difference in behavior for the target robot is at
the moment of broadcasting its periodic update messages:
when a robot finds its own id in its routing table, it
increases the sequence number each time it includes it
in an update message. This way, the sequence number is
no longer 0, so it ceases to be a request, and information
starts traveling back to the searching robot. Moreover, the
increasing sequence number serves as a pulse from the
target robot and allows to compare the relative recency
of different routes. The distance value broadcast by the
target remains 0 as in the request, as this is the correct
distance to itself.

Processing update messages

When a robot A receives a periodic update message from
a robot B, it first updates its neighbor table. If B is not
yet in the table, it adds a new entry with the distance
and direction obtained from the IrRB system; otherwise,
it updates the distance and direction to neighbor B
using a moving average (with discount value 0.7 in our
experiments). Then, it goes through the list of entries in
B’s message. For each non-request entry about a target
C, it calculates the estimate of the distance from A to C
by adding together the reported estimated distance from
B to C and the measured distance from A to B (from the
neighbor table). Notice that this way we do not obtain
the straight line distance from A to C, but rather the
distance over the path traveled by the routing information.
While the straight line path might contain obstacles, the
length of the path traveled by the routing information is an
upper bound for the shortest obstacle free path. Once the
new distance estimate is calculated, robot A compares the
new information with that in its routing table. It replaces
the information for target C in the routing table with the
new information if the new information either has a higher
sequence number (has traveled from the destination more
recently), or has the same sequence number but a shorter
distance. The rationale behind preferring more recent
information, is to direct robot navigation to areas that are
better connected and therefore get navigation information
more frequently. In empirical tests, we found that using
sequence numbers always allowed a faster completion of
the navigation task.

Updates for odometry

As a robot is moving, it continuously updates all distance
estimates in its routing table according to odometry mea-
sures. It adds the distance it travels to the estimate in the
table. The goal is to maintain a good distance estimate
between the reception of different update messages, so
that even long periods without new messages can be over-
come. This way, routing information can travel partly via
telecommunication in update messages and partly while
being carried on board a moving robot, and the system is
able to work in intermittently connected networks. Notice
that we do not take the direction of the robot’s movements
into account, only the distance (as integrated over the
robot’s travel path). This may lead to overestimation of

Fig. 1. Model of a foot-bot (taken from Swarmanoid
(2007)).

the distance (e.g., if the robot moves in circles), but this
way we are sure that it is an upper bound of the length
of the shortest obstacle free path. Finally, the robot also
updates the estimated location (distance and direction)
of each neighbor according to its odometry. Here, the
movement direction is accounted for.

Robot navigation

Each time the searching robot gets a valid update (with a
better sequence number or with the same sequence number
and shorter distance than previous information) about its
target, it records the distance and direction to the robot it
got the update from, and goes to that location. If it reaches
that location before getting a new valid update, it waits
there (different strategies could be applied here, such as
continuing on the previous direction or executing a local
search; instead, we opted for a conservative approach in
order to focus our investigations on the network guided
navigation system). If it finds the target robot in its
neighbor table, it goes straight there.

4. TESTS IN SIMULATION

In this section we present results from experiments in
simulation (experiments with real robots are reported in
section 5). The robotic platform we use in simulation is the
foot-bot (see Figure 1), which is developed as part of the
Swarmanoid project 1 . It is about 15 cm wide and long
and 20 cm high, and moves on the ground using Treels,
which are a combination of tracks and wheels. The foot-
bot’s IrRB system has a maximum range of about 3 meters
and a precision of 20% for range estimates and 30 degrees
for bearing estimates. Its nominal bandwidth is 40kbps.
These performance data are the ones we used in simulation
and are based on an initial design of the system; the
final system is expected to have better performance. For
complete details of the foot-bot, see Swarmanoid (2007).

All tests are done using the Swarmanoid simulator (Swar-
manoid (2008)). For each test scenario we execute 30 inde-
pendent runs. We report the average with 95% confidence
interval (using a t-test) of the time needed for the searching
robot to reach its target. We compare our delay toler-
ant robot navigation algorithm with two other navigation
systems based on ad hoc routing algorithms proposed in
Ducatelle et al. (2008). The first of these sets up a route
between searcher and target in the ad hoc network and lets
1 http://www.swarmanoid.org



Fig. 2. Scenarios of increasing difficulty: scenario 5 includes
all obstacles labeled 1 up to 5, scenario 4 includes the
obstacles labeled 1 up to 4, and so on until scenario 0.
The robot in the right bottom corner is the searcher,
and the one in the top left corner the target. The line
between them symbolizes this relationship.

the searching robot physically follow the route, stopping
each time it falls without a valid route. In the following,
we refer to this algorithm as “Follow route”. The second
system also creates a route between searcher and target,
but uses it only to obtain an estimate of the straight line
direction and distance to the target, and lets the searcher
travel straight there. We refer to this strategy as “Fol-
low estimate”. While “Follow route” requires continuous
end-to-end connectivity, “Follow estimate” can overcome
moments of missing connectivity but has more difficulties
when non-convex obstacles block the straight line path.

We use a room of 10 × 12 m2, with one searching robot
and one target robot, located in opposite corners of the
room. All other robots execute random movements, which
simulates the fact that they are involved in tasks of their
own and that their behavior is independent from the task
of guiding the searching robot. The random movements
consist in choosing a new speed and turning radius from a
gaussian distribution at regular intervals of 5 seconds (the
average speed is 0.15 m/s and the average turning radius 2
m; we used a maximum speed to 0.34 m/s). All robots are
equipped with a minimal obstacle avoidance mechanism
based on proximity sensors.

In a first set of tests, we evaluate the different navigation
systems in scenarios of increasing difficulty. We start from
an obstacle free room (scenario 0) and gradually add
blocks until we get a complex environment with multiple
dead ends (scenario 5). The scenarios are illustrated in
Figure 2, where the obstacles are labeled 1 up to 5 so that
each scenario i (0 ≤ i ≤ 5) contains all obstacles j for
which j ≤ i. We use 40 robots in total. The results are
shown in Figure 3. The delay tolerant system consistently
outperforms the “Follow route” system. Both approaches
are based on identifying obstacle free paths through line-
of-sight communication, but the “Follow route” system
requires end-to-end network connectivity. The “Follow
estimate” approach works slightly differently: it requires
only occasional end-to-end connectivity, in order to get
an estimate of the direction to go in. It can therefore

Fig. 3. Results for tests in scenarios with increasing com-
plexity. We compare the delay tolerant navigation al-
gorithm (“Delay tolerant”) with one based on follow-
ing a route in an ad hoc network (“Follow route”) and
one using an estimate of the goal location (“Follow
estimate”). We show the time needed for the searching
robot to find the target (in seconds, on a log scale),
with a 95% confidence interval.

Fig. 4. Results for tests with a varying number of robots
(using scenario 3 from Figure 2).

outperform the delay tolerant approach in the open space
scenario, but has difficulties when the environment gets
more complex, both due to the reduced network connec-
tivity and the fact that it looses time in dead ends where
it has to rely on wall following to escape.

In a second set of tests, we evaluate the behavior when
varying the number of robots. We use scenario 3 from
Figure 2 and increase the number of robots from 15
up to 40 (with steps of 5). The results are given in
Figure 4. They show that the delay tolerant approach
always performs much better than the other two. The
“Follow route” approach gives bad results for low numbers
of robots, but improves as the robot density increases
and the network connectivity gets better. It can however
never get close to the performance of the delay tolerant
algorithm. The “Follow estimate” system does not profit
from the increased robot density in the same way because
it also struggles with the dead ends in the environment.



Fig. 5. An e-puck robot with IrRB module.

5. TESTS IN HARDWARE

To further evaluate our navigation system, we tested it on
real robots. We used a set of 16 e-puck robots (since at the
time of writing, the foot-bots still had to be completed).
The e-puck (see Mondada et al. (2009)) is a small, low-
cost mobile robot developed primarily for educational
purposes. It has a diameter of 0.07 m and a maximum
speed of 0.13 m/s. We equipped the e-pucks with the IrRB
module described in Gutiérrez et al. (2008). The module
contains 12 sets of infrared emitters and receivers, placed
around its perimeter. It is reported to give an average error
of 0.0768 m on the range estimate and 6.69 degrees on the
bearing estimate (averaged over distances going from 10
cm to 6 m), but due to differences between individual
boards we were faced with larger errors. Its maximum
range can be tuned between 0.40 m and 6 m. It can send
up to around 100 messages of 2 bytes per second, although
the unavailability of a MAC protocol severely limits the
practical bandwidth in situations with multiple robots; we
limit ourselves to 2 messages of 2 bytes per robot every 2
seconds. Due to the limited bandwidth, it was not possible
to implement the “Follow route” and “Follow estimate”
algorithms on the e-pucks. A photograph of an e-puck with
the IrRB module on top is shown in Figure 5.

We use an arena of 2.4 × 3 m2, which means that distances
are about a factor 4 smaller than in simulation. This
roughly corresponds to the difference in speed between the
e-pucks and the simulated foot-bots (we use a maximum
speed of 0.087 m/s on the e-pucks vs. 0.34 m/s in simu-
lation). We also tune the maximum range of the e-puck
IrRB communication to be 0.75 m, which is one quarter
of the range of the foot-bot’s IrRB system in simulation.

Like in simulation, we carry out tests with scenarios of
increasing complexity. We use four different scenarios.
They are represented in Figure 6, where obstacles are
labeled 1 to 3 so that each scenario i (0 ≤ i ≤ 3) contains
all obstacles j for which j ≤ i. In terms of the structure of
the environment, scenarios 0 to 3 correspond to scenarios
0, 2, 3 and 4 of the simulation experiments of section 4
respectively. The searching robot is placed in the bottom
right corner of the arena, and the target in the top left
corner (indicated with circles). The 14 other e-pucks are

Fig. 6. Scenarios of increasing difficulty for the real robots:
scenario 3 includes all boxes labeled 1 up to 3, scenario
2 includes the boxes labeled 1 and 2, and so on. The
robot indicated with a circle in the bottom right is
the searcher, and the one in the top left is the target.

Fig. 7. Results for tests with e-puck robots in scenarios of
increasing complexity. We show the time it took the
searcher to find the target (in seconds) for 5 different
runs per scenario, together with the averages.

placed randomly and execute random movements. These
random movements consist in an in place turn of between
-90 and 90 degrees, and a move straight forward at 0.087
m/s for 5 s. All robots are equipped with an obstacle
avoidance mechanism. We execute 5 test runs per scenario.

In Figure 7 we report the time required for the searcher
to reach its target in each scenario. These results are of a
similar order of magnitude as the ones in simulation (see
Figures 3 and 4). Moreover, we observe a similar trend as
in Figure 3: while there is a jump in performance between
scenarios 1 and 2 (scenarios 2 and 3 in simulation), the
algorithm is able to cope with the increased complexity
relatively well. It is also interesting to compare the travel
times with the shortest possible. This can easily be done
for the open space scenario (scenario 0): the straight line
distance between the start position of searcher and target
is about 3 m, and the speed of the searcher is 0.087 m/s, so
that the minimum travel time is about 35 s. In the best run
the searcher needed the double of this, while on average
it needed 2.5 times this time. The lost time includes time
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Fig. 8. Example of a navigation path in scenario 3 (the tics
on x and y-axis indicate distances of 0.5 m).

for the message to travel from searcher to target and back,
time spent waiting when no new updates are received, and
time lost due to navigation errors. The latter are due to
errors estimating direction and distance using the IrRB
system, as well as to the fact that the network of robots
samples the arena space in discrete points. An example
navigation path (in scenario 3) is given in Figure 8.

6. CONCLUSIONS

We have presented a robot navigation system for net-
worked multi-robot systems. It relies on the use of a local
communication device that is able to provide range and
bearing estimates for communicating robots. The navi-
gation system is based on routing algorithms for ad hoc
networks, but is adapted to be delay tolerant, in order to
deal with situations of intermittent network connectivity.
We implemented it both in simulation and on real robots.
We show that it works even in cases of low robot density
and network connectivity, and in complex environments.

In future work, we plan to first improve the working of the
IrRB system, in order to get better distance and direction
estimates, and higher bandwidth. Then, we will extend
our algorithm, e.g. implement a strategy for the searcher
to deal with periods in which no new updates are received.
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